【題目】(1)①如圖1,已知,,可得__________.
②如圖2,在①的條件下,如果平分,則__________.
③如圖3,在①、②的條件下,如果,則__________.
(2)嘗試解決下面問題:已知如圖4,,,是的平分線,,求的度數.
科目:初中數學 來源: 題型:
【題目】某體育老師統(tǒng)計了七年級甲、乙兩個班女生的身高,并繪制了以下不完整的統(tǒng)計圖.
請根據圖中信息,解決下列問題:
(1)兩個班共有女生多少人?
(2)將頻數分布直方圖補充完整;
(3)求扇形統(tǒng)計圖中部分所對應的扇形圓心角度數;
(4)身高在的5人中,甲班有3人,乙班有2人,現從中隨機抽取兩人補充到學校國旗隊.請用列表法或畫樹狀圖法,求這兩人來自同一班級的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知點B、C為線段AD上的兩點,AB=BC=CD,點E為線段CD的中點,點F為線段AD的三等分點,若BE=14,則線段EF=____________
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為準備母親節(jié)禮物,同學們委托小明用其支付寶余額團購鮮花或禮盒.每束鮮花的售價相同,每份禮盒的售價也相同.若團購15束鮮花和18份禮盒,余額差80元;若團購18束鮮花和15份禮盒,余額剩70元.若團購19束鮮花和14份禮盒,則支付寶余額剩_______元.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC的平分線交AC于點D.作∠BDE=∠ABD交AB于點E.
(1)求證:ED∥BC;
(2)點M為射線AC上一點(不與點A重合)連接BM,∠ABM的平分線交射線ED于點N.若∠MBC=∠NBC,∠BED=105°,求∠ENB的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將一個有45°角的三角板的直角頂點放在一張寬為3cm的紙帶邊沿上,另一個頂
點在紙帶的另一邊沿上,測得三角板的一邊與紙帶的一邊所在的直線成30°角,如圖(3),
則三角板的最大邊的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料:
如圖1,⊙O1和⊙O2外切于點C,AB是⊙O1和⊙O2外公切線,A、B為切點,
求證:AC⊥BC
證明:過點C作⊙O1和⊙O2的內公切線交AB于D,
∵DA、DC是⊙O1的切線
∴DA=DC.
∴∠DAC=∠DCA.
同理∠DCB=∠DBC.
又∵∠DAC+∠DCA+∠DCB+∠DBC=180°,
∴∠DCA+∠DCB=90°.
即AC⊥BC.
根據上述材料,解答下列問題:
(1)在以上的證明過程中使用了哪些定理?請寫出兩個定理的名稱或內容;
(2)以AB所在直線為x軸,過點C且垂直于AB的直線為y軸建立直角坐標系(如圖2),已知A、B兩點的坐標為(﹣4,0),(1,0),求經過A、B、C三點的拋物線y=ax2+bx+c的函數解析式;
(3)根據(2)中所確定的拋物線,試判斷這條拋物線的頂點是否落在兩圓的連心O1O2上,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90°,AC=AD,M,N分別為AC,AD的中點,
且∠ABM=∠BAM,連接BM,MN,BN.
(1)求證:BM=MN;
(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com