【題目】如圖,是正三角形內(nèi)的一點(diǎn),且.若將 繞點(diǎn)逆時(shí)針旋轉(zhuǎn)后,得到,則點(diǎn)與點(diǎn) 之間的距離為_____________________.
【答案】6, 150°.
【解析】
由題意根據(jù)旋轉(zhuǎn)的性質(zhì)分析,并利用等邊三角形的判定方法得到△PAP′為等邊三角形,再根據(jù)等邊三角形的性質(zhì)以及根據(jù)勾股定理的逆定理進(jìn)行分析求解.
解:∵△PAC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°后,得到△P′AB,
∴∠PAP′=60°,PA=P′A=6,P′B=PC=10,
∴△PAP′為等邊三角形,
∴PP′=PA=6,∠P′PA=60°,
在△BPP′中,P′B=10,PB=8,PP′=6,
∵62+82=102,
∴PP′2+PB2=P′B2,
∴△BPP′為直角三角形,且∠BPP′=90°,
∴∠APB=∠P′PB+∠BPP′=60°+90°=150°.
故答案為:6,150°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)①如圖1,已知,,可得__________.
②如圖2,在①的條件下,如果平分,則__________.
③如圖3,在①、②的條件下,如果,則__________.
(2)嘗試解決下面問(wèn)題:已知如圖4,,,是的平分線,,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=﹣x+3與x軸,y軸分別相交于點(diǎn)B,C,經(jīng)過(guò)B,C兩點(diǎn)的拋物線y=ax2+bx+c與x軸的另一交點(diǎn)為A,頂點(diǎn)為P,且對(duì)稱軸是直線x=2.
(1)求該拋物線的函數(shù)表達(dá)式;
(2)請(qǐng)問(wèn)在拋物線上是否存在點(diǎn)Q,使得以點(diǎn)B,C,Q為頂點(diǎn)的三角形為直角三角形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)過(guò)S(0,4)的動(dòng)直線l交拋物線于M,N兩點(diǎn),試問(wèn)拋物線上是否存在定點(diǎn)T,使得不過(guò)定點(diǎn)T的任意直線l都有∠MTN=90°?若存在,請(qǐng)求出點(diǎn)T的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“五一勞動(dòng)節(jié)大酬賓!”,某商場(chǎng)設(shè)計(jì)的促銷活動(dòng)如下:在一個(gè)不透明的箱子里放有4個(gè)相同的小球,球上分別標(biāo)有“0元”、“10元”、“20元”和“50元”的字樣.規(guī)定:在本商場(chǎng)同一日內(nèi),顧客每消費(fèi)滿300元,就可以在箱子里先后摸出兩個(gè)球(第一次摸出后不放回).商場(chǎng)根據(jù)兩小球所標(biāo)金額的和返還相等價(jià)格的購(gòu)物券,購(gòu)物券可以在本商場(chǎng)消費(fèi).某顧客剛好消費(fèi)300元.
(1)該顧客至多可得到 元購(gòu)物券;
(2)請(qǐng)你用畫樹狀圖或列表的方法,求出該顧客所獲得購(gòu)物券的金額不低于50元的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校長(zhǎng)暑假將帶領(lǐng)該校前級(jí)“三好學(xué)生”去北京大學(xué)游學(xué),甲旅行社說(shuō):如果校長(zhǎng)買全票一 張,則其余的學(xué)生可享受半價(jià)優(yōu)惠.乙旅行社說(shuō):“包括校長(zhǎng)在內(nèi)全部按票價(jià)的六折優(yōu)惠”. 若全票價(jià)為元,兩家旅行社的服務(wù)質(zhì)量相同,根據(jù)三好學(xué)生的人數(shù)你認(rèn)為選擇哪一 家旅行社才會(huì)比較合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】作圖題:如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(﹣2,1),B(﹣1,4),C(﹣3,2).
(1)畫出△ABC關(guān)于y軸對(duì)稱的圖形△A1B1C1,并直接寫出C1點(diǎn)坐標(biāo);
(2)以原點(diǎn)O為位似中心,位似比為1:2,在y軸的左側(cè),畫出△ABC放大后的圖形△A2B2C2,并直接寫出C2點(diǎn)坐標(biāo);
(3)如果點(diǎn)D(a,b)在線段AB上,請(qǐng)直接寫出經(jīng)過(guò)(2)的變化后D的對(duì)應(yīng)點(diǎn)D2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩個(gè)反比例函數(shù)y=(k>1)和y=在第一象限內(nèi)的圖象如圖所示,點(diǎn)P在y=的圖象上,PC⊥x軸于點(diǎn)C,交y=的圖象于點(diǎn)A,PD⊥y軸于點(diǎn)D,交y=的圖象于點(diǎn)B,BE⊥x軸于點(diǎn)E,當(dāng)點(diǎn)P在y=圖象上運(yùn)動(dòng)時(shí),以下結(jié)論:①BA與DC始終平行;②PA與PB始終相等;③四邊形PAOB的面積不會(huì)發(fā)生變化;④△OBA的面積等于四邊形ACEB的面積.其中一定正確的是_____(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(﹣3,0),與y軸交于點(diǎn)C,點(diǎn)D(﹣2,﹣3)在拋物線上.
(1)求拋物線的解析式;
(2)拋物線的對(duì)稱軸上有一動(dòng)點(diǎn)P,求出PA+PD的最小值;
(3)點(diǎn)G拋物線上的動(dòng)點(diǎn),在x軸上是否存在點(diǎn)E,使B、D、E、G這樣的四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的E點(diǎn)坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com