【題目】小蟲從某點出發(fā)在一直線上來回爬行,假定向右爬行的路程記為正,向左爬行的路程記為負(fù),爬過的路程依次為(單位:cm):+5,-3,+10,-8,-6,+12,-10.問:

1)小蟲離開出發(fā)點最遠(yuǎn)是多少厘米?

2)小蟲最后是否回到原點?

3)在爬行過程中看,如果每爬行1cm獎勵2粒芝麻,則小蟲共可得到多少粒芝麻?

【答案】112cm;(2)小蟲最后回到原點;(3)小蟲可得到108粒芝麻.

【解析】

1)通過計算小蟲每次爬完之后離原點的距離即可得出答案;

2)利用有理數(shù)的加法進(jìn)行計算然后看最后的結(jié)果是否為0,若為0,則回到原點,反之則沒有;

3)將每個數(shù)的絕對值相加,然后再乘2即可得出答案.

(1)根據(jù)題意可知,

小蟲第一次爬完之后離原點的距離為5cm

小蟲第二次爬完之后離原點的距離為

小蟲第三次爬完之后離原點的距離為

小蟲第四次爬完之后離原點的距離為

小蟲第五次爬完之后離原點的距離為

小蟲第六次爬完之后離原點的距離為

小蟲第七次爬完之后離原點的距離為

∴小蟲離開出發(fā)點最遠(yuǎn)是12cm

2)∵

∴小蟲最后回到原點

3,

(粒)

∴小蟲可得到108粒芝麻

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=BD,點E、F分別是ABAD上任意的點(不與端點重合),且AE=DF,連接BFDE相交于點G,連接CGBD相交于點H.給出如下幾個結(jié)論:①△AED≌△DFBS四邊形BCDG=;AF=2DF,則BG=6GF;CGBD一定不垂直;⑤∠BGE的大小為定值.

其中正確的結(jié)論個數(shù)為( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】七年級開展演講比賽,學(xué)校決定購買一些筆記本和鋼筆作為獎品.現(xiàn)有甲、乙兩家商店出售兩種同樣的筆記本和鋼筆.他們的定價相同:筆記本定價為每本25元,鋼筆每支定價6元,但是他們的優(yōu)惠方案不同,甲店每買一本筆記本贈一支鋼筆;乙店全部按定價的9折優(yōu)惠.已知七年級需筆記本20本,鋼筆x支(大于20支).問:

1)在甲店購買需付款  元,在乙店購買需付款  元;

2)若x=30,通過計算說明此時到哪家商店購買較為合算?

3)當(dāng)x=40時,請設(shè)計一種方案,使購買最省錢?算出此時需要付款多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩座建筑物的水平距離BC40m,從D點測得A點的仰角為30°,B點的俯角為10°,求建筑物AB的高度(結(jié)果保留小數(shù)點后一位).

參考數(shù)據(jù)sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,1.732.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=x2﹣6x+9與直線y=x+3交于A,B兩點(點A在點B的左側(cè)),拋物線的頂點為C,直線y=x+3x軸交于點D.

(Ⅰ)求拋物線的頂點C的坐標(biāo)及A,B兩點的坐標(biāo);

(Ⅱ)將拋物線y=x2﹣6x+9向上平移1個單位長度,再向左平移t(t>0)個單位長度得到新拋物線,若新拋物線的頂點EDAC內(nèi),求t的取值范圍;

(Ⅲ)點P(m,n)(﹣3<m<1)是拋物線y=x2﹣6x+9上一點,當(dāng)PAB的面積是ABC面積的2倍時,求m,n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形 A BCD 中,對角線 A C、BD 相交于點 O,DE 平分∠A DO 交 AC 于點 E ,把 A DE 沿AD 翻折,得到A DE’,點 F 是 DE 的中點,連接 A F、BF、EF,若 AE=.

下列結(jié)論 :①AD 垂直平分 EE’,② tan∠ADE =-1,

③ CA DE - CODE =2-1, ④ S四邊形AEFE=

其中結(jié)論正確的個數(shù)是 ( ) .

A. 4 個 B. 3 個 C. 2 個 D. 1 個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形 OA BC 中,已知點 B(8,4),C(5,0),

點 D 為 OB、AC 交點,點 P 從原點出發(fā)向 x 軸正方向運動;

(1) 在點 P 運動過程中,若∠OBP=900,求出點 P 坐標(biāo);

(2) 在點 P 運動過程中,若∠PDC+∠BCP=900,求出點 P 坐標(biāo);

(3) 點 P 在(2)的位置時停止運動,點 M 從點 P 出發(fā)沿 x 軸正方向運動,連結(jié) BM,若點 P 關(guān)于BM 的對稱點 P到 AB 所在直線的距離為 2,求此時點 M 的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列方程沒有實數(shù)根的是(  )

A. x3+20B. x2+2x+20

C. x1D. 0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形中,點邊上,連接,是線段上的定點,是線段上的動點,若,,且周長的最小值為6,則的長為_______

查看答案和解析>>

同步練習(xí)冊答案