如圖,點E是正方形ABCD對角線AC上一點,AF⊥BE于點F,交BD于點G,則下述結(jié)論中不成立的是( )
A.AG=BE
B.△ABG≌△BCE
C.AE=DG
D.∠AGD=∠DAG
【答案】分析:根據(jù)ASA方法求證△ABG≌△BCE,得AE=DG,AG=BE,故A、B、C選項正確.
解答:解:在△ABG和△BCE中,AB=BC,
∵AC,BD為正方形的角平分線∴∠ABG=∠BCE=45°,
∵AF⊥BE,∴∠BAF+∠ABF=90°,
又∵∠ABF+∠CBE=90°,∴∠BAF=∠CBE,
所以△ABG≌△BCE,故B選項正確;
∵全等三角形對應(yīng)邊相等
∴AE=DG,故C選項正確;
且AG=BE.     故A選項正確.
故選擇D.
點評:本題考查全等三角形中對應(yīng)邊相等,考查了正方形對角線垂直且對角線互相平分的性質(zhì).解題關(guān)鍵是找出全等三角形,并且求證.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點E是正方形ABCD邊BA延長線上一點(AE<AD),連接DE.與正方形ABCD的外接圓相交于點F,BF與AD相交于點G.
(1)求證:BG=DE;
(2)若tan∠E=2,BE=6
2
,求BG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•包頭)如圖,點E是正方形ABCD內(nèi)的一點,連接AE、BE、CE,將△ABE繞點B順時針旋轉(zhuǎn)90°到△CBE′的位置.若AE=1,BE=2,CE=3,則∠BE′C=
135
135
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點E是正方形ABCD邊BC的中點,H是BC延長線上的一點,EG⊥AE于點E,交邊CD于G,
(1)求證:△ABE∽△ECG;
(2)延長EG交∠DCH的平分線于F,則AE與EF的數(shù)量關(guān)系是
AE=EF
AE=EF
;
(3)若E為線段BC上的任意一點,則它們之間的關(guān)系是否還能成立?若成立,請給予證明;若不能成立,則舉一個反例.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•青銅峽市模擬)如圖,點E是正方形ABCD內(nèi)一點,△CDE是等邊三角形,連接EB、EA.
求證:△ADE≌△BCE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點M是正方形ABCD的邊CD的中點,正方形ABCD的邊長為4cm,點P按A-B-C-M-D的順序在正方形的邊上以每秒1cm的速度作勻速運動,設(shè)點P的運動時間為x(秒),△APM的面積為y(cm2
(1)直接寫出點P運動2秒時,△AMP面積; 
(2)在點P運動4秒后至8秒這段時間內(nèi),y與x的函數(shù)關(guān)系式;
(3)在點P整個運動過程中,當(dāng)x為何值時,y=3?

查看答案和解析>>

同步練習(xí)冊答案