【題目】如圖,△ABC內(nèi)接于⊙O,BC為直徑,∠BAC的平分線與BC和⊙O分別相交于D和E,P為CB延長(zhǎng)線上一點(diǎn),PB=5,PA=10,且∠DAP=∠ADP.
(1)求證:PA與⊙O相切;
(2)求sin∠BAP的值;
(3)求ADAE的值.
【答案】(1)詳見解析;(2);(3)90.
【解析】
(1)連接OA,由三角形的外角性質(zhì)和角平分線得出∠PAB=∠C,由等腰三角形的性質(zhì)得出∠OAC=∠C=∠PAB,由圓周角定理得出∠BAC=90°,證出∠OAP=90°,即AP⊥OA,即可得出PA與⊙O相切;
(2)證明△PAB∽△PCA,得出 得出,即可得出結(jié)果;
(3)連接CE,由切割線定理求出PC=20,得出BC=PC﹣PB=15,求出,再證明△ACE∽△ADB,得出,即可得出結(jié)果.
(1)證明:連接OA,如圖1所示:
∵AE平分∠BAC,
∴∠BAD=∠CAD,
∵∠DAP=∠BAD+∠PAB,∠ADP=∠CAD+∠C,∠DAP=∠ADP,
∴∠PAB=∠C,
∵OA=OC,
∴∠OAC=∠C=∠PAB,
∵BC為直徑,
∴∠BAC=90°,即∠OAC+∠OAB=90°,
∴∠PAB+∠OAB=90°,即∠OAP=90°,
∴AP⊥OA,
∴PA與⊙O相切;
(2)解:∵∠P=∠P,∠PAB=∠C,
∴△PAB∽△PCA,
∴
∵∠CAB=90°,
∴
∴sin∠BAP=sin∠C=;
(3)解:連接CE,如圖2所示:
∵PA與⊙O相切,
∴PA2=PB×PC,即102=5×PC,
∴PC=20,
∴BC=PC﹣PB=15,
∵
∴,
∵AE是∠BAC的角平分線,
∴∠BAD=∠CAE,
∵∠E=∠ABD,
∴△ACE∽△ADB,
∴
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016山西。┪沂∧程O果基地銷售優(yōu)質(zhì)蘋果,該基地對(duì)需要送貨且購(gòu)買量在2000kg﹣5000kg(含2000kg和5000kg)的客戶有兩種銷售方案(客戶只能選擇其中一種方案):
方案A:每千克5.8元,由基地免費(fèi)送貨.
方案B:每千克5元,客戶需支付運(yùn)費(fèi)2000元.
(1)請(qǐng)分別寫出按方案A,方案B購(gòu)買這種蘋果的應(yīng)付款y(元)與購(gòu)買量x(kg)之間的函數(shù)表達(dá)式;
(2)求購(gòu)買量x在什么范圍時(shí),選用方案A比方案B付款少;
(3)某水果批發(fā)商計(jì)劃用20000元,選用這兩種方案中的一種,購(gòu)買盡可能多的這種蘋果,請(qǐng)直接寫出他應(yīng)選擇哪種方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線()與軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),與軸交于點(diǎn),該拋物線的頂點(diǎn)的縱坐標(biāo)是.
(1)求點(diǎn)、的坐標(biāo);
(2)設(shè)直線與直線關(guān)于該拋物線的對(duì)稱軸對(duì)稱,求直線的表達(dá)式;
(3)平行于軸的直線與拋物線交于點(diǎn)、,與直線交于點(diǎn).若,結(jié)合函數(shù)圖象,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AE是BC邊上的高線,BM平分∠ABC交AE于點(diǎn)M,經(jīng)過B,M 兩點(diǎn)的⊙O交BC于點(diǎn)G,交AB于點(diǎn)F ,F(xiàn)B為⊙O的直徑.
(1)求證:AM是⊙O的切線
(2)當(dāng)BE=3,cosC=時(shí),求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列對(duì)二次函數(shù)的圖象的描述,正確的是( 。
A. 經(jīng)過原點(diǎn)
B. 對(duì)稱軸是y軸
C. 開口向下
D. 在對(duì)稱右側(cè)部分是向下的
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB=AC,CO的延長(zhǎng)線交AB于點(diǎn)D.
(1)求證:AO平分∠BAC;
(2)若BC=6,sin∠BAC=,求AC和CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,AD=,將矩形ABCD繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)后得到矩形EBGF,此時(shí)恰好四邊形AEHB為菱形,連接CH交FG于點(diǎn)M,則HM=( 。
A. B. 1 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB是⊙O的直徑,AB=4,點(diǎn)F,C是⊙O上兩點(diǎn),連接AC,AF,OC,弦AC平分∠FAB,∠BOC=60°,過點(diǎn)C作CD⊥AF交AF的延長(zhǎng)線于點(diǎn)D,垂足為點(diǎn)D.
(1)求扇形OBC的面積(結(jié)果保留π);
(2)求證:CD是⊙O的切線.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com