【題目】點(diǎn)P為拋物線(xiàn)為常數(shù),)上任意一點(diǎn),將拋物線(xiàn)繞頂點(diǎn)G逆時(shí)針旋轉(zhuǎn)90°后得到的圖象與軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的上方),點(diǎn)Q為點(diǎn)P旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn).

1)拋物線(xiàn)的對(duì)稱(chēng)軸是直線(xiàn)________,當(dāng)m=2時(shí),點(diǎn)P的橫坐標(biāo)為4時(shí),點(diǎn)Q的坐標(biāo)為_________

2)設(shè)點(diǎn)Q請(qǐng)你用含m,的代數(shù)式表示________;

3)如圖,點(diǎn)Q在第一象限,點(diǎn)D軸的正半軸上,點(diǎn)COD的中點(diǎn),QO平分∠AQC,當(dāng)AQ=2QC,QD=時(shí),求的值.

【答案】(1)x=m,Q(-2,2);(2)a=m-;(3)m=1.

【解析】

(1)配方即可得出拋物線(xiàn)的對(duì)稱(chēng)軸;根據(jù)m的值確定出原拋物線(xiàn)的解析式,進(jìn)而可求得P、G的坐標(biāo)過(guò)PPEx軸于E,過(guò)QQFx軸于F,根據(jù)旋轉(zhuǎn)的性質(zhì)知:△GQF≌△PGEQFGE、PEGF可據(jù)此求得點(diǎn)Q的坐標(biāo)

(2)已知Q點(diǎn)坐標(biāo),即可得到QFFG的長(zhǎng),仿照(1)的方法可求出點(diǎn)P的坐標(biāo),然后代入原拋物線(xiàn)的解析式中,可求得a、b、m的關(guān)系式

(3)延長(zhǎng)QCE,使得QCCE,那么AQQE,可證△QCD≌△ECO,那么QDOEm,AQQE,QO平分∠AQC,易證得△AQO≌△EQO,OAOEmA點(diǎn)坐標(biāo)為(0,m),然后將點(diǎn)A的坐標(biāo)代入(2)的關(guān)系式中,即可求得m的值

1)=,對(duì)稱(chēng)軸為直線(xiàn)x=m

當(dāng)m=2時(shí)y=(x﹣2)2,G(2,0).

∵點(diǎn)P的橫坐標(biāo)為4,P在拋物線(xiàn)上,∴將x=4代入拋物線(xiàn)解析式得y=(4﹣2)2=4,∴P(4,4),如圖,連接QGPG,過(guò)點(diǎn)QQFx軸于F,過(guò)點(diǎn)PPEx軸于E依題意,可得:△GQF≌△PGE,FQEG=2,FGEP=4,∴FO=2,∴Q(﹣2,2).

(2)已知Qab),GEQFb,FGma

由(1)知PEFGma,GEQFb,Pm+b,ma),代入原拋物線(xiàn)的解析式中,ma=(m+b2﹣2mm+b)+m2mam2+b2+2mb﹣2m2﹣2mb+m2,amb2,故用含m,b的代數(shù)式表示aamb2

(3)如圖延長(zhǎng)QC到點(diǎn)E,使CECQ,連接OE

COD中點(diǎn),∴OCCD

∵∠ECO=∠QCD,∴△ECO≌△QCD,∴OEDQm

AQ=2QC,∴AQQE

QO平分∠AQC,∴∠1=∠2,∴△AQO≌△EQO,∴AOEOm,∴A(0,m).

A(0,m)在新圖象上,∴0=mm2,∴m1=1,m2=0(舍),∴m=1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線(xiàn)y=x2+bx+c與x軸交于A(1,0),B(m,0),與y軸交于C.

(1)若m=﹣3,求拋物線(xiàn)的解析式,并寫(xiě)出拋物線(xiàn)的對(duì)稱(chēng)軸;

(2)如圖1,在(1)的條件下,設(shè)拋物線(xiàn)的對(duì)稱(chēng)軸交x軸于D,在對(duì)稱(chēng)軸左側(cè)的拋物線(xiàn)上有一點(diǎn)E,使SACE= SACD,求點(diǎn)E的坐標(biāo);

(3)如圖2,設(shè)F(﹣1,﹣4),F(xiàn)Gy于G,在線(xiàn)段OG上是否存在點(diǎn)P,使OBP=FPG?若存在,求m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,B=90°,AB=12mmBC=24mm,動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿邊ABB2mm/s的速度移動(dòng)(不與點(diǎn)B重合),動(dòng)點(diǎn)Q從點(diǎn)B開(kāi)始沿邊BCC4mm/s的速度移動(dòng)(不與點(diǎn)C重合).如果P、Q分別從A、B同時(shí)出發(fā),設(shè)運(yùn)動(dòng)的時(shí)間為xs,四邊形APQC的面積為ymm2

(1)yx之間的函數(shù)關(guān)系式;

(2)求自變量x的取值范圍;

(3)四邊形APQC的面積能否等于172mm2.若能,求出運(yùn)動(dòng)的時(shí)間;若不能,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,已知A(4,a),B(﹣2,﹣4)是一次函數(shù)y=k1x+b的圖象和反比例函數(shù)y=﹣的圖象的交點(diǎn).

(1)求反比例函數(shù)和直線(xiàn)AB的解折式;

(2)將直線(xiàn)OA沿y軸向下平移m個(gè)單位后,得到直線(xiàn)l,設(shè)直線(xiàn)l與直線(xiàn)AB的交點(diǎn)為P,若SOAP=2SOAB,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,O為正方形對(duì)角線(xiàn)的交點(diǎn),BE平分DBC,交DC于點(diǎn)E,延長(zhǎng)BC到點(diǎn)F,使CF=CE,連結(jié)DF,交BE的延長(zhǎng)線(xiàn)于點(diǎn)G,連結(jié)OG

(1)求證:BCE≌△DCF

(2)判斷OG與BF有什么關(guān)系,證明你的結(jié)論

(3)若DF2=8-4,求正方形ABCD的面積?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD,CB=CD,ECD上一點(diǎn),BEACF,連接DF.

(1)證明:∠BAC=∠DAC.

(2)若∠BEC=∠ABE,試證明四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明與小亮玩游戲,如圖,兩組相同的卡片,每組三張,第一組卡片正面分別標(biāo)有數(shù)字1,3,5;第二組卡片正面分別標(biāo)有數(shù)字2,4,6.他們將卡片背面朝上,分組充分洗勻后,從每組卡片中各摸出一張,稱(chēng)為一次游戲.當(dāng)摸出的兩張卡片的正面數(shù)字之積小于10,則小明獲勝;當(dāng)摸出的兩張卡片的正面數(shù)字之積超過(guò)10,則小亮獲勝.你認(rèn)為這個(gè)游戲規(guī)則對(duì)雙方公平嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,一超市從一樓到二樓有一自動(dòng)扶梯,圖2是側(cè)面示意圖.已知自動(dòng)扶梯AB的坡度為12.4,AB的長(zhǎng)度是13米,MN是二樓樓頂,MNPQ,CMN上處在自動(dòng)扶梯頂端B點(diǎn)正上方的一點(diǎn),BCMN,在自動(dòng)扶梯底端A處測(cè)得C點(diǎn)的仰角為37°,則二樓的層高BC約為(精確到0.1米,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)( 。

1 2

A. 4 B. 3.6 C. 2.2 D. 4.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠BAC=30°且ABACP是底邊上的高AH上一點(diǎn).若AP+BP+CP的最小值為2,則BC_____

查看答案和解析>>

同步練習(xí)冊(cè)答案