【題目】如圖,△ABC中,∠BAC=30°且ABAC,P是底邊上的高AH上一點(diǎn).若AP+BP+CP的最小值為2,則BC_____

【答案】

【解析】

如圖將ABP繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到AMG.連接PG,CM.首先證明當(dāng)M,G,P,C共線時(shí),PA+PB+PC的值最小,最小值為線段CM的長(zhǎng),想辦法求出AC的長(zhǎng)即可解決問(wèn)題.

如圖將ABP繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到AMG.連接PG,CM.

AB=AC,AHBC,

∴∠BAP=CAP,

PA=PA,

∴△BAP≌△CAP(SAS),

PC=PB,

MG=PB,AG=AP,GAP=60°,

∴△GAP是等邊三角形,

PA=PG,

PA+PB+PC=CP+PG+GM,

∴當(dāng)M,G,P,C共線時(shí),PA+PB+PC的值最小,最小值為線段CM的長(zhǎng),

AP+BP+CP的最小值為2,

CM=2,

∵∠BAM=60°,BAC=30°,

∴∠MAC=90°,

AM=AC=2,

BNACN.則BN=AB=1,AN=,CN=2-

BC=

故答案為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)P為拋物線為常數(shù),)上任意一點(diǎn),將拋物線繞頂點(diǎn)G逆時(shí)針旋轉(zhuǎn)90°后得到的圖象與軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的上方),點(diǎn)Q為點(diǎn)P旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn).

1)拋物線的對(duì)稱(chēng)軸是直線________,當(dāng)m=2時(shí),點(diǎn)P的橫坐標(biāo)為4時(shí),點(diǎn)Q的坐標(biāo)為_________;

2)設(shè)點(diǎn)Q請(qǐng)你用含m的代數(shù)式表示________;

3)如圖,點(diǎn)Q在第一象限,點(diǎn)D軸的正半軸上,點(diǎn)COD的中點(diǎn),QO平分∠AQC,當(dāng)AQ=2QC,QD=時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是半圓O的直徑,過(guò)點(diǎn)O作弦AD的垂線交半圓O于點(diǎn)E,交AC于點(diǎn)C,使BED=C.

(1)判斷直線AC與圓O的位置關(guān)系,并證明你的結(jié)論;

(2)若AC=8,cosBED=,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2+mxx軸的負(fù)半軸于點(diǎn)A.點(diǎn)By軸正半軸上一點(diǎn),點(diǎn)A關(guān)于點(diǎn)B的對(duì)稱(chēng)點(diǎn)A′恰好落在拋物線上.過(guò)點(diǎn)A′x軸的平行線交拋物線于另一點(diǎn)C.若點(diǎn)A′的橫坐標(biāo)為1,則A′C的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某數(shù)學(xué)興趣小組的同學(xué)在一次活動(dòng)中,為了測(cè)量某建筑物AB的高,他們來(lái)到另一建筑物CD上的點(diǎn)C處進(jìn)行觀察,如圖所示,他們測(cè)得建筑物AB頂部A的仰角為30°,底部B的俯角為45°,已知建筑物AB、CD的距離DB為12m,求建筑物AB的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+cyx的部分對(duì)應(yīng)值如下表:

x

-1

0

1

3

y

-3

1

3

1

下列結(jié)論:①拋物線的開(kāi)口向下;②其圖象的對(duì)稱(chēng)軸為x=1;③當(dāng)x<1時(shí),函數(shù)值yx的增大而增大;④方程ax2+bx+c=0有一個(gè)根大于4,其中正確的結(jié)論有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A、B在直線l上,AB=10cm,⊙B的半徑為1cm,點(diǎn)C在直線l上,過(guò)點(diǎn)C作直線CD∠DCB=30°,直線CDA點(diǎn)出發(fā)以每秒4cm的速度自左向右平行運(yùn)動(dòng),與此同時(shí),⊙B的半徑也不斷增大,其半徑r(cm)與時(shí)間t(秒)之間的關(guān)系式為r=1+t(t≥0),當(dāng)直線CD出發(fā)________秒直線CD恰好與⊙B相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把n個(gè)邊長(zhǎng)為1的正方形拼接成一排,求得tanBA1C=1,tanBA2C=,tanBA3C=,計(jì)算tanBA4C=_____,…按此規(guī)律,寫(xiě)出tanBAnC=_____(用含n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程(a+2)x2﹣2ax+a=0有兩個(gè)不相等的實(shí)數(shù)根x1和x2, 拋物線y=x2﹣(2a+1)x+2a﹣5與x軸的兩個(gè)交點(diǎn)分別為位于點(diǎn)(2,0)的兩旁,若|x1|+|x2|=2,則a的值為________

查看答案和解析>>

同步練習(xí)冊(cè)答案