(本題滿(mǎn)分13分)
已知:如圖,AB=AC,點(diǎn)D是BC的中點(diǎn),AB平分∠DAE,,垂足為E.

(1)求證:AD=AE.
(2)若BE∥AC,試判斷△ABC的形狀,并說(shuō)明理由.

(1)證明略
(2)等邊三角形解析:
(1)證明:∵ AB=AC,點(diǎn)D是BC的中點(diǎn),
∴∠ADB=90°.  ………………… 2分[來(lái)源:學(xué)科
∵ AE⊥AB,

3

 
∴∠E=90°=∠ADB. ………………… 3分

∵ AB平分
∴∠1=∠2.……………………… 4分
在△ADB和△AEB中,

∴△ADB≌△AEB.…………………………  6分
∴ AD=AE.……………………… 7分
(2),△ABC是等邊三角形.理由:……………………… 1分
∵BE∥AC
∴∠EAC="90°………………………" 2分
∵ AB=AC,點(diǎn)D是BC的中點(diǎn)
∴∠1=∠2=∠3=30°……………………… 4分
∴∠BAC=∠1+∠3=60°……………………5分
∴△ABC是等邊三角形………………………6分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題滿(mǎn)分13分)如圖,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,∠DCB=30°.點(diǎn)E、F同時(shí)從B點(diǎn)出發(fā),沿射線BC向右勻速移動(dòng).已知F點(diǎn)移動(dòng)速度是E點(diǎn)移動(dòng)速度的2倍,以EF為一邊在CB的上方作等邊△EFG.設(shè)E點(diǎn)移動(dòng)距離為xx>0).

⑴△EFG的邊長(zhǎng)是____(用含有x的代數(shù)式表示),當(dāng)x=2時(shí),點(diǎn)G的位置在_______;

⑵若△EFG與梯形ABCD重疊部分面積是y,求

①當(dāng)0<x≤2時(shí),yx之間的函數(shù)關(guān)系式;

②當(dāng)2<x≤6時(shí),y與x之間的函數(shù)關(guān)系式;

⑶探求⑵中得到的函數(shù)y在x取含何值時(shí),存在最大值,并求出最大值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題滿(mǎn)分13分)
(1)已知2x1的平方根為±5,求5x+4的立方根.
(2)已知xy的算術(shù)平方根是3,,求xy的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年湖北省黃岡市初一上學(xué)期期末模擬數(shù)學(xué)卷 題型:解答題

(本題滿(mǎn)分13分)
已知:如圖,AB=AC,點(diǎn)D是BC的中點(diǎn),AB平分∠DAE,,垂足為E.

(1)求證:AD=AE.
(2)若BE∥AC,試判斷△ABC的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年高級(jí)中等學(xué)校招生考試數(shù)學(xué)卷(廣東珠海) 題型:解答題

(本題滿(mǎn)分13分)如圖,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,∠DCB=30°.點(diǎn)E、F同時(shí)從B點(diǎn)出發(fā),沿射線BC向右勻速移動(dòng).已知F點(diǎn)移動(dòng)速度是E點(diǎn)移動(dòng)速度的2倍,以EF為一邊在CB的上方作等邊△EFG.設(shè)E點(diǎn)移動(dòng)距離為xx>0).

⑴△EFG的邊長(zhǎng)是____(用含有x的代數(shù)式表示),當(dāng)x=2時(shí),點(diǎn)G的位置在_______;

⑵若△EFG與梯形ABCD重疊部分面積是y,求

①當(dāng)0<x≤2時(shí),yx之間的函數(shù)關(guān)系式;

②當(dāng)2<x≤6時(shí),y與x之間的函數(shù)關(guān)系式;

⑶探求⑵中得到的函數(shù)y在x取含何值時(shí),存在最大值,并求出最大值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案