張三和李四兩人加工同一種零件,每小時(shí)張三比李四多加工5個(gè)零件,張三加工120個(gè)這種零件與李四加工100個(gè)這種零件所用時(shí)間相等,求張三和李四每小時(shí)各加工多少個(gè)這種零件?若設(shè)張三每小時(shí)經(jīng)過這種零件x個(gè),則下面列出的方程正確的是( )
A. B. C. D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,正方形ABCD中,AB=4,E是BC的中點(diǎn),點(diǎn)P是對角線AC上一動點(diǎn),則PE+PB的最小值為.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
隨著信息技術(shù)的快速發(fā)展,“互聯(lián)網(wǎng)+”滲透到我們?nèi)粘I畹母鱾(gè)領(lǐng)域,網(wǎng)上在線學(xué)習(xí)交流已不再是夢,現(xiàn)有某教學(xué)網(wǎng)站策劃了A,B兩種上網(wǎng)學(xué)習(xí)的月收費(fèi)方式:
收費(fèi)方式 | 月使用費(fèi)/元 | 包時(shí)上網(wǎng)時(shí)間/h | 超時(shí)費(fèi)/(元/min) |
A | 7 | 25 | 0.01 |
B | m | n | 0.01 |
設(shè)每月上網(wǎng)學(xué)習(xí)時(shí)間為x小時(shí),方案A,B的收費(fèi)金額分別為yA,yB.
(1)如圖是yB與x之間函數(shù)關(guān)系的圖象,請根據(jù)圖象填空:m= 10 ;n= 50
(2)寫出yA與x之間的函數(shù)關(guān)系式.
(3)選擇哪種方式上網(wǎng)學(xué)習(xí)合算,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在等腰三角形、平行四邊形、直角梯形和圓中,既是軸對稱圖形又是中心對稱圖形的是( )
A.等腰三角形 B.平行四邊形 C.直角梯形D.圓
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
為了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,則3M=3+32+33+34+…+3101,因此,3M-M=3101-1,所以,即,仿照以上推理計(jì)算:1+5+52+53+…+52015的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系中,我們不妨把縱坐標(biāo)是橫坐標(biāo)的2倍的點(diǎn)稱之為“理想點(diǎn)”,例如點(diǎn)(-2,-4),(1,2),(3,6)…都是“理想點(diǎn)”,顯然這樣的“理想點(diǎn)”有有無數(shù)多個(gè).
(1)若點(diǎn)M(2,a)是反比例函數(shù)(k為常數(shù),k≠0)圖象上的“理想點(diǎn)”,求這個(gè)反比例函數(shù)的表達(dá)式;
(2)函數(shù)y=3mx-1(m為常數(shù),m≠0)的圖象上存在“理想點(diǎn)”嗎?若存在,請求出“理想點(diǎn)”的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇江陰第一中學(xué)九年級3月月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分10分)如圖,已知拋物線經(jīng)過A(1,0),B(0,3),C( 3,0)三點(diǎn).
(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)動點(diǎn)Q從點(diǎn)O出發(fā),以每秒1個(gè)單位長度的速度在線段OA上運(yùn)動,同時(shí)動點(diǎn)M從O點(diǎn)出發(fā)以每秒3個(gè)單位長度的速度在線段OB上運(yùn)動,過點(diǎn)Q作x軸的垂線交線段AB于點(diǎn)N,交拋物線于點(diǎn)P,設(shè)運(yùn)動的時(shí)間為t秒.
①當(dāng)t為何值時(shí),四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com