已知在△ABC,∠C=90°,a:b=,則sinA=    ,cosA=    ,tgA=    ,ctgA=   
【答案】分析:先根據(jù)勾股定理及a:b=求出直角三角形的三邊關(guān)系,再根據(jù)銳角三角函數(shù)的定義即可解答.
解答:解:∵設(shè)Rt△ABC中a=x,則b=x,c===2x,
∴a:b:c=:1:2,
∴sinA==,cosA==,tgA==,ctgA==
故答案為:,,
點評:本題考查的是勾股定理及銳角三角函數(shù)的定義,能根據(jù)勾股定理求出直角三角形三邊的比值是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知在△ABC中,點D、E、F分別在邊AB、AC和BC上,且DE∥BC,DF∥AC,那么下列比例式中,正確的是( 。
A、
AE
EC
=
DE
BC
B、
AE
EC
=
CF
FB
C、
DF
AC
=
DE
BC
D、
EC
AC
=
FC
BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知在△ABC中,AB=AC=10,cosC=
45
,中線BM與CN相交于點G,那么點A與點G之間的距離等于
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,已知在△ABC中,AB=AC,E是AD上一點,BE=CE.求證:AD⊥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2014•靜安區(qū)一模)如圖,已知在△ABC中,點D、E分別在邊AB、AC上,DE∥BC,
AD
DB
=
2
3
,如果
AB
=
a
BC
=
b

(1)求
EA
(用向量
a
,
b
的式子表示)
(2)求作向量
1
2
a
-
b
(不要求寫作法,但要指出所作圖表中表示結(jié)論的向量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知在△ABC中,AB=AC=5,BC=8,分別以BC所在直線為x軸,以BC邊上高所在直線為y軸建立直角坐標(biāo)系,則△ABC重心G的坐標(biāo)是
(0,1)或(0,-1)
(0,1)或(0,-1)

查看答案和解析>>

同步練習(xí)冊答案