如圖,一次函數(shù)的圖象交x軸于點(diǎn)A,交正比例函數(shù)的圖象于點(diǎn)B.矩形CDEF的邊DC在x軸上,D在C的左側(cè),EF在x軸上方,DC=2,DE=4.當(dāng)點(diǎn)C坐標(biāo)為(-2,0)時(shí),矩形CDEF開(kāi)始以每秒2個(gè)單位的速度沿x軸向右運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.
(1)求點(diǎn)B的坐標(biāo).
(2)矩形CDEF運(yùn)動(dòng)t秒時(shí),直接寫(xiě)出C、D兩點(diǎn)的坐標(biāo).
(3)當(dāng)點(diǎn)B在矩形CDEF的一邊上時(shí),求t的值.
(4)設(shè)CF、DE分別交折線OBA于M、N兩點(diǎn),當(dāng)四邊形MCDN為直角梯形時(shí),求t的取值范圍.

【答案】分析:(1)本題需先根據(jù)題意列出方程組,求出方程組的解集即可得出點(diǎn)B的坐標(biāo).
(2)本題需根據(jù)矩形向右移動(dòng)的速度和時(shí)間以及點(diǎn)C、D,原來(lái)的坐標(biāo)即可寫(xiě)出C、D兩點(diǎn)的坐標(biāo).
(3)本題需分當(dāng)B點(diǎn)在CF上,當(dāng)B點(diǎn)在ED上兩種情況討論即可.
(4)本題需先求出當(dāng)D點(diǎn)在點(diǎn)O處時(shí),當(dāng)點(diǎn)C在A處時(shí)t的值,即可求出四邊形MCDN為直角梯形時(shí)t的取值范圍.
解答:解:(1)由
解得:
∴點(diǎn)B的坐標(biāo)為(2,3).

(2)∵矩形CDEF開(kāi)始以每秒2個(gè)單位的速度沿x軸向右運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.
∴C、D兩點(diǎn)的坐標(biāo)為:(-2+2t,0)(-4+2t,0).

(3)當(dāng)B點(diǎn)在CF上時(shí),則
-2+2t=2,
t=2.
當(dāng)B在ED上時(shí),則
-4+2t=2,
t=3.

(4)根據(jù)題意得,當(dāng)D點(diǎn)在點(diǎn)O處時(shí),t=2,
當(dāng)點(diǎn)C在A處時(shí),t=5,
又∵當(dāng)DC在OA之間運(yùn)動(dòng)時(shí),
四邊形MCDN為直角梯形.
把x=-2+2t代入得:y=-(-2+2t)+4,
把x=-4+2t代入得:y=(-4+2t),
當(dāng)-(-2+2t)+4=(-4+2t)時(shí),解得:t=,
∴t的取值范圍是:2<t<5且t≠
點(diǎn)評(píng):本題主要考查了一次函數(shù)的綜合應(yīng)用,在解題時(shí)要注意把一次函數(shù)的圖象和性質(zhì)與直角梯形相結(jié)合是本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知反比例函數(shù)y=
12x
的圖象和一次函數(shù)y=kx-7的圖象都經(jīng)過(guò)點(diǎn)P(m,2).
(1)求這個(gè)一次函數(shù)的解析式;
(2)如果等腰梯形ABCD的頂點(diǎn)A、B在這個(gè)一次函數(shù)的圖象上,頂點(diǎn)C、D在這個(gè)反比例函數(shù)的圖象上,兩底AD、BC與y軸平行,且A和B的橫坐標(biāo)分別為a、b(b>a>0),求代數(shù)式ab的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,一次函數(shù)的圖象與反比例函數(shù)y1= –  ( x<0)的圖象相交于A點(diǎn),與y軸、x軸分別相交于B、C兩點(diǎn),且C(2,0).當(dāng)x<–1時(shí),一次函數(shù)值大于反比例函數(shù)的值,當(dāng)x>–1時(shí),一次函數(shù)值小于反比例函數(shù)值.

(1)    求一次函數(shù)的解析式;

(2)    設(shè)函數(shù)y2=  (x>0)的圖象與y1= –  (x<0)的圖象關(guān)于y軸對(duì)稱(chēng).在y2=  (x>0)的圖象上取一點(diǎn)PP點(diǎn)的橫坐標(biāo)大于2),過(guò)PPQx軸,垂足是Q,若四邊形BCQP的面積等于2,求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,一次函數(shù)的圖象與反比例函數(shù)(x<0)的圖象相交于A點(diǎn),與y軸、x軸分別相交于B、C兩點(diǎn),且C(2,0),當(dāng)x<-1時(shí),一次函數(shù)值大于反比例函數(shù)值,當(dāng)x>-1時(shí),一次函數(shù)值小于反比例函數(shù)值.

(1)求一次函數(shù)的解析式;

(2)設(shè)函數(shù)(x>0)的圖象與(x<0)的圖象關(guān)于y軸對(duì)稱(chēng),在(x>0)的圖象上取一點(diǎn)P(P點(diǎn)的橫坐標(biāo)大于2),過(guò)P點(diǎn)作PQ⊥x軸,垂足是Q,若四邊形BCQP的面積等于2,求P點(diǎn)的坐標(biāo).

解答:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,一次函數(shù)的圖象與反比例函數(shù)y1= – ( x<0)的圖象相交于A點(diǎn),與y軸、x軸分別相交于B、C兩點(diǎn),且C(2,0).當(dāng)x<–1時(shí),一次函數(shù)值大于反比例函數(shù)的值,當(dāng)x>–1時(shí),一次函數(shù)值小于反比例函數(shù)值.

(1)   求一次函數(shù)的解析式;

(2)   設(shè)函數(shù)y2= (x>0)的圖象與y1= – (x<0)的圖象關(guān)于y軸對(duì)稱(chēng).在y2= (x>0)的圖象上取一點(diǎn)PP點(diǎn)的橫坐標(biāo)大于2),過(guò)PPQx軸,垂足是Q,若四邊形BCQP的面積等于2,求P點(diǎn)的坐標(biāo).

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,一次函數(shù)的圖象與反比例函數(shù)y1= – ( x<0)的圖象相交于A點(diǎn),與y軸、x軸分別相交于B、C兩點(diǎn),且C(2,0).當(dāng)x<–1時(shí),一次函數(shù)值大于反比例函數(shù)的值,當(dāng)x>–1時(shí),一次函數(shù)值小于反比例函數(shù)值.

(1)   求一次函數(shù)的解析式;

(2)   設(shè)函數(shù)y2= (x>0)的圖象與y1= – (x<0)的圖象關(guān)于y軸對(duì)稱(chēng).在y2= (x>0)的圖象上取一點(diǎn)PP點(diǎn)的橫坐標(biāo)大于2),過(guò)PPQx軸,垂足是Q,若四邊形BCQP的面積等于2,求P點(diǎn)的坐標(biāo).

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案