【題目】探究題: =3, =0.5, =6, = , =0.
根據以上算式,回答:
(1) 一定等于a嗎?如果不是,那么 =;
(2)利用你總結的規(guī)律,計算: ①若x<2,則 =;
② = .
(3)若a,b,c為三角形的三邊長,化簡: + + .
【答案】
(1)
(2)2﹣x;π﹣3.14
(3)解:∵a+b>c,b<c+a,b+c>a,
∴a+b﹣c>0,b﹣c﹣a<0,b+c﹣a>0,
∴原式=|a+b﹣c|+|b﹣c﹣a|+|b+c﹣a|
=a+b﹣c﹣(b﹣c﹣a)+(b+c﹣a)
=a+b+c
【解析】解:(1.)由題意可知: =|a|, (2.)①當x<2時,
∴x﹣2<0,
∴ =|x﹣2|=﹣(x﹣2)=2﹣x,
②∵3.14﹣π<0,
∴ =|3.14﹣π|=π﹣3.14,
所以答案是:(1)|a|;(2)①2﹣x;②π﹣3.4
【考點精析】掌握二次根式的性質與化簡是解答本題的根本,需要知道1、如果被開方數是分數(包括小數)或分式,先利用商的算數平方根的性質把它寫成分式的形式,然后利用分母有理化進行化簡.2、如果被開方數是整數或整式,先將他們分解因數或因式,然后把能開得盡方的因數或因式開出來.
科目:初中數學 來源: 題型:
【題目】定義:若點P(a,b)在函數y=的圖象上,將以a為二次項系數,b為一次項系數構造的二次函數y=ax2+bx稱為函數y=的一個“派生函數”.例如:點(2, )在函數y=的圖象上,則函數y=2x2+ 稱為函數y=的一個“派生函數”.現給出以下兩個命題:
(1)存在函數y=的一個“派生函數”,其圖象的對稱軸在y軸的右側
(2)函數y=的所有“派生函數”的圖象都經過同一點,下列判斷正確的是( )
A. 命題(1)與命題(2)都是真命題
B. 命題(1)與命題(2)都是假命題
C. 命題(1)是假命題,命題(2)是真命題
D. 命題(1)是真命題,命題(2)是假命題
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,點A、B的坐標分別為(a,0),(0,b),其中a,b滿足 +|2a﹣5b﹣30|=0.將點B向右平移26個單位長度得到點C,如圖①所示.
(1)求點A,B,C的坐標;
(2)點M,N分別為線段BC,OA上的兩個動點,點M從點C向左以1.5個單位長度/秒運動,同時點N從點O向點A以2個單位長度/秒運動,如圖②所示,設運動時間為t秒(0<t<15).
①當CM<AN時,求t的取值范圍;
②是否存在一段時間,使得S四邊形MNOB>2S四邊形MNAC?若存在,求出t的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】A、B、C為數軸上的三點,動點A、B同時從原點出發(fā),動點A每秒運動x個單位,動點B每秒運動y個單位,且動點A運動到的位置對應的數記為a,動點B運動到的位置對應的數記為b,定點C對應的數為8.
(1)若2秒后,a、b滿足|a+8|+(b﹣2)2=0,則x= , y= , 并請在數軸上標出A、B兩點的位置.
(2)若動點A、B在(1)運動后的位置上保持原來的速度,且同時向正方向運動z秒后使得|a|=|b|,使得z= .
(3)若動點A、B在(1)運動后的位置上都以每秒2個單位向正方向運動繼續(xù)運動t秒,點A與點C之間的距離表示為AC,點B與點C之間的距離表示為BC,點A與點B之間的距離為AB,且AC+BC=1.5AB,則t= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,AB=BC=CD=DA,∠A=∠B=∠BCD=∠ADC=90°,點E是AB上一點,點F是AD延長線上一點,且DF=BE.
(1)求證:CE=CF;
(2)在圖1中,如果點G在AD上,且∠GCE=45°,那么EG=BE+DG是否成立,請說明理由.
(3)運用(1)、(2)解答中所積累的經驗和知識,完成下題:如圖2,AD∥BC(BC>AD),∠B=90°,AB=BC=12,點E是AB上一點,且∠DCE=45°,BE=4,求DE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“宜居襄陽”是我們的共同愿景,空氣質量備受人們關注.我市某空氣質量監(jiān)測站點檢測了該區(qū)域每天的空氣質量情況,統(tǒng)計了2013年1月份至4月份若干天的空氣質量情況,并繪制了如下兩幅不完整的統(tǒng)計圖.
請根據圖中信息,解答下列問題:
(1)統(tǒng)計圖共統(tǒng)計了 天的空氣質量情況;
(2)請將條形統(tǒng)計圖補充完整;空氣質量為“優(yōu)”所在扇形的圓心角度數是 ;
(3)從小源所在環(huán)保興趣小組4名同學(2名男同學,2名女同學)中,隨機選取兩名同學去該空氣質量監(jiān)測站點參觀,則恰好選到一名男同學和一名女同學的概率是 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com