如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,點A的坐標(biāo)為(0,4),點B的坐標(biāo)為(4,0),點C的坐標(biāo)為(﹣4,0),點P在射線AB上運動,連結(jié)CP與y軸交于點D,連結(jié)BD.過P,D,B三點作⊙Q與y軸的另一個交點為E,延長DQ交⊙Q于點F,連結(jié)EF,BF.
(1)求直線AB的函數(shù)解析式;
(2)當(dāng)點P在線段AB(不包括A,B兩點)上時.
①求證:∠BDE=∠ADP;
②設(shè)DE=x,DF=y.請求出y關(guān)于x的函數(shù)解析式;
(3)請你探究:點P在運動過程中,是否存在以B,D,F(xiàn)為頂點的直角三角形,滿足兩條直角邊之比為2:1?如果存在,求出此時點P的坐標(biāo):如果不存在,請說明理由.
考點:
一次函數(shù)綜合題.
分析:
(1)設(shè)直線AB的函數(shù)解析式為y=kx+4,把(4,0)代入即可;
(2)①先證出△BOD≌△COD,得出∠BOD=∠CDO,再根據(jù)∠CDO=∠ADP,即可得出∠BDE=∠ADP,
②先連結(jié)PE,根據(jù)∠ADP=∠DEP+∠DPE,∠BDE=∠ABD+∠OAB,∠ADP=∠BDE,∠DEP=∠ABD,得出∠DPE=∠OAB,再證出∠DFE=∠DPE=45°,最后根據(jù)∠DEF=90°,得出△DEF是等腰直角三角形,從而求出DF=DE,即y=x;
(3)當(dāng)=2時,過點F作FH⊥OB于點H,則∠DBO=∠BFH,再證出△BOD∽△FHB,===2,得出FH=2,OD=2BH,再根據(jù)∠FHO=∠EOH=∠OEF=90°,得出四邊形OEFH是矩形,OE=FH=2,EF=OH=4﹣OD,根據(jù)DE=EF,求出OD的長,從而得出直線CD的解析式為y=x+,最后根據(jù)求出點P的坐標(biāo)即可;
當(dāng)=時,連結(jié)EB,先證出△DEF是等腰直角三角形,過點F作FG⊥OB于點G,同理可得△BOD∽△FGB,===,得出FG=8,OD=BG,再證出四邊形OEFG是矩形,求出OD的值,再求出直線CD的解析式,最后根據(jù)即可求出點P的坐標(biāo).
解答:
解:(1)設(shè)直線AB的函數(shù)解析式為y=kx+4,
代入(4,0)得:4k+4=0,
解得:k=﹣1,
則直線AB的函數(shù)解析式為y=﹣x+4;
(2)①由已知得:
OB=OC,∠BOD=∠COD=90°,
又∵OD=OD,
∴△BOD≌△COD,
∴∠BOD=∠CDO,
∵∠CDO=∠ADP,
∴∠BDE=∠ADP,
②連結(jié)PE,
∵∠ADP是△DPE的一個外角,
∴∠ADP=∠DEP+∠DPE,
∵∠BDE是△ABD的一個外角,
∴∠BDE=∠ABD+∠OAB,
∵∠ADP=∠BDE,∠DEP=∠ABD,
∴∠DPE=∠OAB,
∵OA=OB=4,∠AOB=90°,
∴∠OAB=45°,
∴∠DPE=45°,
∴∠DFE=∠DPE=45°,
∵DF是⊙Q的直徑,
∴∠DEF=90°,
∴△DEF是等腰直角三角形,
∴DF=DE,即y=x;
(3)當(dāng)BD:BF=2:1時,
過點F作FH⊥OB于點H,
∵∠DBO+∠OBF=90°,∠OBF+∠BFH=90°,
∴∠DBO=∠BFH,
又∵∠DOB=∠BHF=90°,
∴△BOD∽△FHB,
∴===2,
∴FH=2,OD=2BH,
∵∠FHO=∠EOH=∠OEF=90°,
∴四邊形OEFH是矩形,
∴OE=FH=2,
∴EF=OH=4﹣OD,
∵DE=EF,
∴2+OD=4﹣OD,
解得:OD=,
∴點D的坐標(biāo)為(0,),
∴直線CD的解析式為y=x+,
由得:,
則點P的坐標(biāo)為(2,2);
當(dāng)=時,
連結(jié)EB,同(2)①可得:∠ADB=∠EDP,
而∠ADB=∠DEB+∠DBE,∠EDP=∠DAP+∠DPA,
∵∠DEP=∠DPA,
∴∠DBE=∠DAP=45°,
∴△DEF是等腰直角三角形,
過點F作FG⊥OB于點G,
同理可得:△BOD∽△FGB,
∴===,
∴FG=8,OD=BG,
∵∠FGO=∠GOE=∠OEF=90°,
∴四邊形OEFG是矩形,
∴OE=FG=8,
∴EF=OG=4+2OD,
∵DE=EF,
∴8﹣OD=4+2OD,
OD=,
∴點D的坐標(biāo)為(0,﹣),
直線CD的解析式為:y=﹣x﹣,
由得:,
∴點P的坐標(biāo)為(8,﹣4),
綜上所述,點P的坐標(biāo)為(2,2)或(8,﹣4).
點評:
此題考查了一次函數(shù)的綜合,用到的知識點是一次函數(shù)、矩形的性質(zhì)、圓的性質(zhì),關(guān)鍵是綜合運用有關(guān)知識作出輔助線,列出方程組.
科目:初中數(shù)學(xué) 來源: 題型:
BD |
AB |
5 |
8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
5 |
29 |
5 |
29 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
k |
x |
k |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com