【題目】如圖,在四邊形ABCD中,ABCD,∠BAD、∠ADC的平分線AE、DF分別與線段BC相交于點EF,∠DFC=30°,AEDF相交干點G,則∠AEC=________.

【答案】120°

【解析】

根據(jù)平行線的性質(zhì)得到∠BAD+ADC=180°;然后根據(jù)角平分線的定義,推知∠DAE+ADF=90°,即可得到∠AGD=90°,根據(jù)對頂角相等可得∠AGD=FGE,再根據(jù)外角定理即可求出∠AEC.

解::∵ABDC,

∴∠BAD+ADC=180°

AEDF分別是∠BAD,∠ADC的平分線,

,

∴∠AGD=90°

又∵∠AGD和∠FGE是對頂角,

∴∠AGD=FGE=90°,

∴∠AEC=FGE+∠∠DFC=90°+30°=120°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知的一條邊的長為5,另兩邊的長是關(guān)于的一元二次方程的兩個實數(shù)根.

1)求證:無論為何值,方程總有兩個不相等的實數(shù)根;

2)當(dāng)為何值時,為直角三角形,并求出的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+c(a≠0)與x軸的兩個交點的坐標(biāo)分別是(-3,0),(2,0),則方程ax2+bx+c=0(a≠0)的解是.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠AOB=90°,在∠AOB的平分線OM上有一點C,將一個三角板的直角頂點與C重合,它的兩條直角邊分別與OA,OB(或它們的反向延長線)相交于點D,E.
當(dāng)三角板繞點C旋轉(zhuǎn)到CD與OA垂直時(如圖①),易證:OD+OE= OC;
當(dāng)三角板繞點C旋轉(zhuǎn)到CD與OA不垂直時,即在圖②,圖③這兩種情況下,上述結(jié)論是否仍然成立?若成立,請給予證明;若不成立,線段OD,OE,OC之間又有怎樣的數(shù)量關(guān)系?請寫出你的猜想,不需證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】馬航MH370 客機(jī)“失聯(lián)”,我國“海巡01號”前往搜尋。如圖某天上午9時,“海巡01號” 輪船位于A處,觀測到某小島P位于輪船的北偏西67.5°,輪船以21海里/時的速度向正北方向行駛,下午2時該船到達(dá)B處,這時觀測到小島P位于該船的南偏西30°方向,求此時輪船所處位置B與小島P的距離?(精確到0.1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某探測隊在地面A、B兩處均探測出建筑物下方C處有生命跡象,已知探測線與地面的夾角分別是25°和60°,且AB=4米,求該生命跡象所在位置C的深度.(結(jié)果精確到1米.參考數(shù)據(jù):sin25°≈0.4,cos25°≈0.9,tan25°≈0.5, ≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.動點M,N從點C同時出發(fā),均以每秒1cm的速度分別沿CA、CB向終點A,B移動,同時動點P從點B出發(fā),以每秒2cm的速度沿BA向終點A移動,連接PM,PN,設(shè)移動時間為t(單位:秒,0<t<2.5).

(1)當(dāng)t為何值時,以A,P,M為頂點的三角形與△ABC相似?
(2)是否存在某一時刻t,使四邊形APNC的面積S有最小值?若存在,求S的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一個鈍角ABC(其中ABC120°)繞

B順時針旋轉(zhuǎn)得A1BC1,使得C點落在AB的延長線上的點C1處,連結(jié)AA1

1)寫出旋轉(zhuǎn)角的度數(shù);

2)求證:A1ACC1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠ABC=90°,AD∥BC,AD= ,以對角線BD為直徑的⊙O與CD切于點D,與BC交于點E,∠ABD=30°,則圖中陰影部分的面積為 . (不取近似值)

查看答案和解析>>

同步練習(xí)冊答案