某商店經銷一種銷售成本為每千克40元的水產品.根據市場分析,若按每千克50元銷售,一個月能銷售500千克;銷售單價每漲1元,月銷售量就減少10千克.針對這種水產品的銷售情況,請解答以下問題:
(1)當銷售單價定為每千克55元時,計算月銷售量和月銷售利潤;
(2)設銷售單價為每千克x元,月銷售利潤為y元,求y與x之間的函數關系式;
(3)當銷售單價定為每千克多少元時,月銷售利潤最大,最大利潤是多少?
【答案】分析:(1)根據“銷售單價每漲1元,月銷售量就減少10千克”,可知:月銷售量=500-(銷售單價-50)×10.由此可得出售價為55元/千克時的月銷售量,然后根據利潤=每千克的利潤×銷售的數量來求出月銷售利潤;
(2)方法同(1)只不過將55元換成了x元,求的月銷售利潤變成了y;
(3)得出(2)的函數關系式后根據函數的性質即可得出函數的最值以及相應的自變量的值.
解答:解:(1)∵當銷售單價定為每千克55元時,則銷售單價每漲(55-50)元,少銷售量是(55-40)×10千克,
∴月銷售量為:500-(55-50)×10=450(千克),
所以月銷售利潤為:(55-40)×450=6750元;
(2)當銷售單價定為每千克x元時,月銷售量為:[500-(x-50)×10]千克.
每千克的銷售利潤是:(x-40)元,
所以月銷售利潤為:y=(x-40)[500-(x-50)×10]=(x-40)(1000-10x)=-10x2+1400x-40000,
∴y與x的函數解析式為:y=-10x2+1400x-40000;
(3)由(2)的函數可知:y=-10(x-70)2+9000
因此:當x=70時,ymax=9000元,
即:當售價是70元時,利潤最大為9000元.
點評:本題主要考查了二次函數的應用,能正確表示出月銷售量是解題的關鍵.求二次函數的最大(小)值有三種方法,第一種可由圖象直接得出,第二種是配方法,第三種是公式法,常用的是后兩種方法.