已知點(diǎn)A(-2,-c)向右平移8個(gè)單位得到點(diǎn),A與兩點(diǎn)均在拋物線上,且這條拋物線與軸的交點(diǎn)的縱坐標(biāo)為-6,求這條拋物線的頂點(diǎn)坐標(biāo).
解:由拋物線軸交點(diǎn)的縱坐標(biāo)為-6,得=-6.
∴A(-2,6),點(diǎn)A向右平移8個(gè)單位得到點(diǎn)(6,6).
∵A與兩點(diǎn)均在拋物線上,
 解這個(gè)方程組,得  
故拋物線的解析式是. ∴拋物線的頂點(diǎn)坐標(biāo)為(2,-10).
根據(jù)平移可得到A′的坐標(biāo).與y軸的交點(diǎn)的縱坐標(biāo)為-6,即拋物線中的c為-6,由點(diǎn)A、A′的坐標(biāo)根據(jù)待定系數(shù)法即可求得拋物線解析式,從而得到頂點(diǎn)坐標(biāo)。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,二次函數(shù)經(jīng)過點(diǎn)O、A、B三點(diǎn),且A點(diǎn)坐標(biāo)為(4,0),B的坐標(biāo)為(m,),點(diǎn)C是拋物線在第三象限的一點(diǎn),且橫坐標(biāo)為-2.

(1)求拋物線的解析式和直線BC的解析式。
(2)直線BC與 x軸相交于點(diǎn)D,求△OBC的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+c(a>0)的頂點(diǎn)是C(0,1),直線l:y=-ax+3與這條拋物線交于P、Q兩點(diǎn),與x軸、y軸分別交于點(diǎn)M和N。
(1)設(shè)點(diǎn)P到x軸的距離為2,試求直線l的函數(shù)關(guān)系式;
(2)若線段MP與PN的長(zhǎng)度之比為3:1,試求拋物線的函數(shù)關(guān)系式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中放置一直角三角板,其頂點(diǎn)為,,,將此三角板繞原點(diǎn)順時(shí)針旋轉(zhuǎn),得到
(1)如圖,一拋物線經(jīng)過點(diǎn),求該拋物線解析式;
(2)設(shè)點(diǎn)是在第一象限內(nèi)拋物線上一動(dòng)點(diǎn),求使四邊形的面積達(dá)到最大時(shí)點(diǎn)的坐標(biāo)及面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線yax2b x+c經(jīng)過A,B,C三點(diǎn),當(dāng)x≥0時(shí),其圖象如圖所示.

(1)求拋物線的解析式,寫出拋物線的頂點(diǎn)坐標(biāo);
(2)畫出拋物線yax2b x+c當(dāng)x<0時(shí)的圖象;
(3)利用拋物線yax2b x+c,寫出x為何值時(shí),y>0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖二次函數(shù)的圖象經(jīng)過兩點(diǎn),且交軸于點(diǎn)
(1)試確定、的值;
(2)過點(diǎn)軸交拋物線于點(diǎn)點(diǎn)為此拋物線的頂點(diǎn),試確定的形狀.
參考公式:頂點(diǎn)坐標(biāo) 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

根據(jù)下列表格中的對(duì)應(yīng)值得到二次函數(shù)(a≠0)于x軸有一個(gè)交點(diǎn)的橫坐標(biāo)x的范圍是(    )                                   
x
3.23
3.24
3.25
3.26
y
﹣0.06
﹣0.02
0.03
0.09
 
A.x<3.23                  B.3.23<x<3.24
C.3.24<x<3.25            D.3.25<x<3.26

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

二次函數(shù)的頂點(diǎn)坐標(biāo)是       ,x      時(shí),yx的增大而增大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的頂點(diǎn)坐標(biāo)是 【   】
A.(-2,3)B.(2,3)C.(-2,-3)D.(2,-3)

查看答案和解析>>

同步練習(xí)冊(cè)答案