【題目】如圖所示,拋物線y=x﹣4x軸交于點(diǎn)A、B,與y 軸相交于點(diǎn)C.

(1)求直線BC的解析式;

(2)將直線BC向上平移后經(jīng)過點(diǎn)A得到直線l:y=mx+n,點(diǎn)D在直線l上,若以A、B、C、D為頂點(diǎn)的四邊形是平行四邊形,求出點(diǎn)D的坐標(biāo).

【答案】(1)直線的解析式為y=x﹣4;(2)點(diǎn)D的坐標(biāo)為(4,4)或(﹣8,﹣4).

【解析】分析:(1)根據(jù)自變量與函數(shù)值得對應(yīng)關(guān)系,可得A,B,C的坐標(biāo),根據(jù)待定系數(shù)法,可得答案;

(2)根據(jù)平行線的關(guān)系,可得m的值,根據(jù)待定系數(shù)法,可得n的值,根據(jù)勾股定理,可得AD,根據(jù)平行線的性質(zhì),可得關(guān)于x的方程,根據(jù)解方程,可得x值,再根據(jù)自變量與函數(shù)值得對應(yīng)關(guān)系,可得D點(diǎn)坐標(biāo).

詳解:(1)令y=0,得x2-x-4=0,

解得:x1=-2,x2=6,

則得點(diǎn)A(-2,0),點(diǎn)B(6,0);

x=0,得y=-4,

得點(diǎn)C(0,-4).

設(shè)直線BC的解析式為y=kx+b,由題意得:

,

解得,

∴直線的解析式為y=x-4;

(2)由將直線BC向上平移后經(jīng)過點(diǎn)A得到直線:y=mx+n,

m=,

y=x+n,則×(-2)+n=0,

n=

則直線的解析式為:y=x+,

若以A、B、C、D為頂點(diǎn)的四邊形是平行四邊形,又ADBC,

AD=BC.

∵點(diǎn)在直線l上,設(shè)點(diǎn)D的坐標(biāo)為(x,x+),過點(diǎn)DDEABE,

AE2+DE2=AD2,又AD=BC,

(x+2)2+(x+2=52,

解得:x1=4,x2=-8.

當(dāng)x=4時(shí),x+=4;

當(dāng)x=-8時(shí),x+

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的頂點(diǎn)A在x軸的正半軸上,頂點(diǎn)D在y軸的正半軸上,點(diǎn)B、點(diǎn)C在第一象限,sin∠OAD=,線段AD、AB的長分別是方程x2﹣11x+24=0的兩根(AD>AB).

(1)求點(diǎn)B的坐標(biāo);

(2)求直線AB的解析式;

(3)在直線AB上是否存在點(diǎn)M,使以點(diǎn)C、點(diǎn)B、點(diǎn)M為頂點(diǎn)的三角形與△OAD相似?若存在,請直接寫出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD的切線,切點(diǎn)為AAB的弦,過點(diǎn)B,交于點(diǎn)C,連接AC,過點(diǎn)C,交AD于點(diǎn)D,連接AO并延長AOBC于點(diǎn)M,交于點(diǎn)E,交過點(diǎn)C的直線于點(diǎn)P,且

求證:;

判斷直線PC的位置關(guān)系,并說明理由;

,,求PC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為發(fā)展旅游經(jīng)濟(jì),我市某景區(qū)對門票釆用靈活的售票方法吸引游客.門票定價(jià)為50/人,非節(jié)假日打折售票,節(jié)假日按團(tuán)隊(duì)人數(shù)分段定價(jià)售票,即人以下(含人)的團(tuán)隊(duì)按原價(jià)售票;超過人的團(tuán)隊(duì),其中人仍按原價(jià)售票,超過人部分的游客打折售票.設(shè)某旅游團(tuán)人數(shù)為人,非節(jié)假日購票款為(元),節(jié)假日購票款為(元).之間的函數(shù)圖象如圖所示.

1)觀察圖象可知:      ;   

2)直接寫出,之間的函數(shù)關(guān)系式;

3)某旅行社導(dǎo)游王娜于51日帶團(tuán),520日(非節(jié)假日)帶團(tuán)都到該景區(qū)旅游,共付門票款1900元,兩個(gè)團(tuán)隊(duì)合計(jì)50人,求,兩個(gè)團(tuán)隊(duì)各有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)決定在本校學(xué)生中開展足球、籃球、羽毛球、乒乓球四種活動(dòng),為了了解學(xué)生對這四種活動(dòng)的喜愛情況,學(xué)校隨機(jī)調(diào)查了該校m名學(xué)生,看他們喜愛哪一種活動(dòng)(每名學(xué)生必選一種且只能從這四種活動(dòng)中選擇一種),現(xiàn)將調(diào)查的結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.請你根據(jù)圖中的信息,解答下列問題.

(1)m=   ,n=   ;

(2)請補(bǔ)全圖中的條形圖;

(3)扇形統(tǒng)計(jì)圖中,足球部分的圓心角是   度;

(4)根據(jù)抽樣調(diào)查的結(jié)果,請估算全校1800名學(xué)生中,大約有多少人喜愛踢足球.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:點(diǎn)在同一條直線上,點(diǎn)為線段的中點(diǎn),點(diǎn)為線段的中點(diǎn).

1)如圖1 ,當(dāng)點(diǎn)在線段上時(shí).

①若,則線段的長為_______

②若點(diǎn)為線段上任意一點(diǎn), ,則線段的長為_______ 用含的代數(shù)式表示)

2)如圖2 ,當(dāng)點(diǎn)不在線段上時(shí),若,求的長(用含的代數(shù)式表示)

3)如圖,已知 ,作射線,若射線平分,射線平分

①當(dāng)射線的內(nèi)部時(shí),則 =________°.

②當(dāng)射線 的外部時(shí),則 =_______° 用含的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,點(diǎn)邊上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作直線,設(shè)的角平分線于點(diǎn),交的外角平分線于點(diǎn)

1)求證:;

2)當(dāng)點(diǎn)運(yùn)動(dòng)到何處時(shí),四邊形是矩形?并證明你的結(jié)論.

3)當(dāng)點(diǎn)運(yùn)動(dòng)到何處,且滿足什么條件時(shí),四邊形是正方形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,鐵路MN和公路PQ在點(diǎn)O處交匯,∠QON30°.公路PQA處距O點(diǎn)240米.如果火車行駛時(shí),周圍200米以內(nèi)會(huì)受到噪音的影響.那么火車在鐵路MN上沿ON方向以20/秒的速度行駛時(shí),A處受噪音影響的時(shí)間為(  )

A. 16B. 18C. 20D. 22

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為線段AB上一點(diǎn),點(diǎn)DBC的中點(diǎn),且AB18cm,AC4CD

1)圖中共有   條線段;

2)求AC的長;

3)若點(diǎn)E在直線AB上,且EA2cm,求BE的長.

查看答案和解析>>

同步練習(xí)冊答案