【題目】如圖,在Rt△ABC中,∠C=90°,∠ABC的平分線交AC于點(diǎn)D,點(diǎn)O是AB上一點(diǎn),⊙O過(guò)B、D兩點(diǎn),且分別交AB、BC于點(diǎn)E、F.
(1) 求證:AC是⊙O的切線;
(2) 已知AB=10,BC=6,求⊙O的半徑r.
【答案】(1)證明參見(jiàn)解析;(2).
【解析】
試題分析:(1)連半徑OD證垂直即可,利用BD平分∠ABC,OD=OB,可以推出∠ODB=∠DBC.得到OD∥BC,又因?yàn)?/span>∠C = 90°,所以∠ADO = 90°,從而得出結(jié)論;(2)因?yàn)镺D∥BC,所以△AOD∽△ABC.得出對(duì)應(yīng)線段成比例,即,代入數(shù)據(jù)得,于是求出半徑r.
試題解析:(1)連接OD. ∵OB=OD,∴∠OBD=∠ODB.∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ODB=∠DBC.∴OD∥BC,又∵∠C = 90°,∴∠ADO = 90°.∴AC⊥OD,即AC是⊙O的切線;(2)由(1)知,OD∥BC,∴△AOD∽△ABC.∴,即.解得,即⊙O的半徑r為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行,結(jié)合下圖,試探索這兩個(gè)角之間的關(guān)系,并說(shuō)明你的結(jié)論.
(1)如圖1,AB∥EF,BC∥DE.∠1與∠2的關(guān)系是: , 理由:;
(2)如圖2,AB∥EF,BC∥DE.∠1與∠2的關(guān)系是: , 理由: .
(3)由(1)(2)你得出的結(jié)論是:如果 , 那么 .
(4)若兩個(gè)角的兩邊互相平行,且一個(gè)角比另一個(gè)角的2倍少30°,則這兩個(gè)角度數(shù)的分別是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知E,F(xiàn)分別是AB、CD上的動(dòng)點(diǎn),P也為一動(dòng)點(diǎn).
(1)如圖1,若AB∥CD,求證:∠P=∠BEP+∠PFD;
(2)如圖2,若∠P=∠PFD﹣∠BEP,求證:AB∥CD;
(3)如圖3,AB∥CD,移動(dòng)E,F(xiàn)使得∠EPF=90°,作∠PEG=∠BEP,求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=116°,∠ACF=25°,求∠FEC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)題意解答
(1)一個(gè)角的余角與這個(gè)角的補(bǔ)角的和比平角的 多1°,求這個(gè)角的度數(shù).
(2)已知5m=2,5n=3,求53m﹣2n .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若將一副三角板按如圖所示的方式放置,則下列結(jié)論不正確的是( )
A.∠1=∠3
B.如果∠2=30°,則有AC∥DE
C.如果∠2=30°,則有BC∥AD
D.如果∠2=30°,必有∠4=∠C
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四邊形ABCD,∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列運(yùn)算中正確的是( 。
A. x2+x2=2x4B. x5﹣x3=x2
C. x2x3=x6D. (﹣x)6÷(﹣x2)=﹣x4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】動(dòng)手操作: 如圖①是一個(gè)長(zhǎng)為2a,寬為2b的長(zhǎng)方形,沿圖中的虛線剪開(kāi)分成四個(gè)大小相等的長(zhǎng)方形,然后按照?qǐng)D②所示拼成一個(gè)正方形.
提出問(wèn)題:
(1)觀察圖②,請(qǐng)用兩種不同的方法表示陰影部分的面積;
(2)請(qǐng)寫(xiě)出三個(gè)代數(shù)式(a+b)2 , (a﹣b)2 , ab之間的一個(gè)等量關(guān)系. 問(wèn)題解決:
根據(jù)上述(2)中得到的等量關(guān)系,解決下列問(wèn)題:
已知:x+y=6,xy=3.求:(x﹣y)2的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com