【題目】如圖,一輛汽車在直線形的公路上由AB行駛,M,N分別是位于AB兩側(cè)的村莊.

1)設(shè)汽車行駛到公路AB上點(diǎn)P的位置時(shí),距離村莊M最近,行駛到點(diǎn)Q的位置時(shí),距離村莊N最近,在圖中的公路AB上分別畫出點(diǎn)PQ位置.

2)在公路AB上是否存在這樣一點(diǎn)H,使汽車行駛到該點(diǎn)時(shí),與村莊M,N的距離相等?如果存在請?jiān)趫D中AB上畫出這一點(diǎn),如果不存在請說明理由.

【答案】(1)見詳解,(2)存在,見詳解.

【解析】

(1)過點(diǎn)M向AB作垂線,垂足P就是所求P點(diǎn),過點(diǎn)N向AB作垂線,垂足Q就是所求Q點(diǎn); (2)與MN的距離相等,即是在這個(gè)線段的垂直平分線上,所以做它的垂直平分線與AB的交點(diǎn)就是點(diǎn)H.

(1)過點(diǎn)M作AB的垂線,垂足為點(diǎn)P,點(diǎn)P即為所求;過點(diǎn)N作AB的垂線,垂足為點(diǎn)Q,點(diǎn)Q即為所求,如圖所示:

(2)存在,如圖,連接MN,作MN的垂直平分線交AB于點(diǎn)H,則點(diǎn)H與村莊M、N的距離相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在ABCBAC=60°,點(diǎn)P為邊BC的中點(diǎn),分別以ABAC為斜邊向外作Rt△ABDRt△ACE,DAB=∠EAC,連結(jié)PDPE,DE

1)如圖1,α=45°,=   ;

2)如圖2α為任意角度,求證PDE

3)如圖3,α=15°,AB=8,AC=6,PDE的面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCO的邊OA、OC在坐標(biāo)軸上,點(diǎn)B坐標(biāo)為(6,6),將正方形ABCO繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)角度α(0°<α<90°),得到正方形CDEF,ED交線段AB于點(diǎn)G,ED的延長線交線段OA于點(diǎn)H,連CH、CG.

(1)求證:CBG≌△CDG;

(2)求HCG的度數(shù);并判斷線段HG、OH、BG之間的數(shù)量關(guān)系,說明理由;

(3)連結(jié)BD、DA、AE、EB得到四邊形AEBD,在旋轉(zhuǎn)過程中,四邊形AEBD能否為矩形?如果能,請求出點(diǎn)H的坐標(biāo);如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD與正三角形AEF的頂點(diǎn)A重合,將△AEF繞頂點(diǎn)A旋轉(zhuǎn),在旋轉(zhuǎn)過程中,當(dāng)BE=DF時(shí),∠BAE的大小可以是(  )

A.15°B.165°C.15°165°D.90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC⊙O的直徑,BC⊙O的弦,點(diǎn)P⊙O外一點(diǎn),連接PA,PBAB,已知∠PBA=∠C

1)求證:PB⊙O的切線;

2)連接OP,若OP∥BC,且OP=8,⊙O的半徑為,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在Rt△ABC中,∠BAC=90°,D是BC的中點(diǎn),E是AD的中點(diǎn),過點(diǎn)A作AF∥BC交BE的延長線于點(diǎn)F.

(1)求證:△AEF≌△DEB;

(2)證明四邊形ADCF是菱形;

(3)若AC=3,AB=4,求菱形ADCF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,在△ABC中,∠ACB是直角,∠B60°,ADCE分別是∠BAC,∠BCA的平分線,AD,CE相交于點(diǎn)F

①請你猜想寫出FEFD之間的數(shù)量關(guān)系,不用說明理由;

②判斷∠AFC與∠B的數(shù)量關(guān)系,請說明理由.

2)如圖2,在△ABC中,如果∠ACB不是直角,而(1)中其他條件不變,請問你在(1)中所得FEFD之間的數(shù)量關(guān)系是否依然成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB60°,∠CAB45°,BC4,點(diǎn)DAB邊上一個(gè)動點(diǎn),連接CD,以DA、DC為一組鄰邊作平行四邊形ADCE,則對角線DE的最小值是( 。

A.+B.1+C.4D.2+2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O的半徑為13cm,弦ABCD,AB=24cmCD=10cm,則AB,CD之間的距離為(  )

A. 17cm B. 7cm C. 12cm D. 17cm7cm

查看答案和解析>>

同步練習(xí)冊答案