【題目】如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),連接AC,∠MAC=∠CAB,作CD⊥AM,垂足為D.
(1)求證:CD是⊙O的切線;
(2)若∠ACD=30°,AD=4,求圖中陰影部分的面積.

【答案】
(1)證明:連接OC.

∵OA=OC.

∴∠OAC=∠OCA,

∵∠MAC=∠OAC,

∴∠MAC=∠OCA,

∴OC∥AM,

∵CD⊥AM,

∴OC⊥CD,

∴CD是⊙O的切線


(2)解:在RT△ACD中,∵∠ACD=30°,AD=4,∠ADC=90°,

∴AC=2AD=8,CD= AD=4 ,

∵∠MAC=∠OAC=60°,OA=OC,

∴△AOC是等邊三角形,

∴S=SACD﹣(S扇形OAC﹣SAOC

= ×4×4 ﹣( ×82

=24 π


【解析】(1)先證明OC∥AM,由CD⊥AM,推出OC⊥CD即可解決問(wèn)題.(2)根據(jù)S=SACD﹣(S扇形OAC﹣SAOC)計(jì)算即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在開(kāi)展好書伴我成長(zhǎng)的讀書活動(dòng)中,某中學(xué)為了解八年級(jí)300名學(xué)生讀書情況,隨機(jī)調(diào)查了八年級(jí)50名學(xué)生讀書的冊(cè)數(shù).統(tǒng)計(jì)數(shù)據(jù)如下表所示:

(1)求這50個(gè)樣本數(shù)據(jù)的平均救,眾數(shù)和中位數(shù).

(2)根據(jù)樣本數(shù)據(jù),估計(jì)該校八年級(jí)300名學(xué)生在本次活動(dòng)中讀書多于2冊(cè)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A、B兩組卡片共5張,A中三張分別寫有數(shù)字2,4,6,B中兩張分別寫有3,5.它們除了數(shù)字外沒(méi)有任何區(qū)別.
(1)隨機(jī)地從A中抽取一張,求抽到數(shù)字為2的概率;
(2)隨機(jī)地分別從A、B中各抽取一張,請(qǐng)你用畫樹(shù)狀圖或列表的方法表示所有等可能的結(jié)果,現(xiàn)制定這樣一個(gè)游戲規(guī)則:若選出的兩數(shù)之積為3的倍數(shù),則甲獲勝;否則乙獲勝.請(qǐng)問(wèn)這樣的游戲規(guī)則對(duì)甲乙雙方公平嗎?為什么?
(3)如果不公平請(qǐng)你修改游戲規(guī)則使游戲規(guī)則對(duì)甲乙雙方公平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)已知關(guān)于x的方程kx=11﹣2x有整數(shù)解,則負(fù)整數(shù)k的值為   

(2)若a+b+c=0,且abc,以下結(jié)論:

a>0,c>0;

②關(guān)于x的方程ax+b+c=0的解為x=1;

a2=(b+c2;

的值為02;

⑤在數(shù)軸上點(diǎn)A、B、C表示數(shù)a、b、c,若b<0,則線段AB與線段BC的大小關(guān)系是ABBC

其中正確的結(jié)論是   (填寫正確結(jié)論的序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】古希臘著名的畢達(dá)哥拉斯學(xué)派把1,3,6,10這樣的數(shù)稱為三角形數(shù),而把1,49,16這樣的數(shù)稱為正方形數(shù).從圖中可以發(fā)現(xiàn),任何一個(gè)大于1正方形數(shù)都可以看作兩個(gè)相鄰三角形數(shù)之和.下列等式中,符合這一規(guī)律的是( 。

A. 361521 B. 25916 C. 13310 D. 491831

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形OABC的邊長(zhǎng)為4,對(duì)角線相交于點(diǎn)P,拋物線L經(jīng)過(guò)O、P、A三點(diǎn),點(diǎn)E是正方形內(nèi)的拋物線上的動(dòng)點(diǎn).

(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,
①直接寫出O、P、A三點(diǎn)坐標(biāo);
②求拋物線L的解析式;
(2)求△OAE與△OCE面積之和的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料:?jiǎn)栴}:如圖1,在菱形ABCD和菱形BEFG中,∠ABC=∠BEF=60°,點(diǎn)A,B,E在同一條直線上,P是線段DF的中點(diǎn),連接PG,PC,探究PGPC的位置關(guān)系

(1)請(qǐng)你寫出上面問(wèn)題中線段PGPC的位置關(guān)系,并說(shuō)明理由;

(2)將圖1中的菱形BEFG繞點(diǎn)B順時(shí)針旋轉(zhuǎn),使菱形BEFG的對(duì)角線BF恰好與菱形ABCD的邊AB在同一條直線上,原問(wèn)題中的其他條件不變(如圖2).你在(1)中得到的結(jié)論是否發(fā)生變化?寫出你的猜想并加以證明,

(3)將菱形ABCD和菱形BEFG均改成正方形,如圖3,PDF的中點(diǎn),此時(shí)PGPC的位置關(guān)系和數(shù)量關(guān)系分別是什么?直接寫出答案。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把幾個(gè)數(shù)用大括號(hào)圍起來(lái),中間用逗號(hào)斷開(kāi),如:{1,2,﹣3}、{﹣2,7,,19},我們稱之為集合,其中的每個(gè)數(shù)稱為該集合的元素.如果一個(gè)所有元素均為有理數(shù)的集合滿足:當(dāng)有理數(shù)a是集合的元素時(shí),2015﹣a也必是這個(gè)集合的元素,這樣的集合我們稱為好的集合.例如集合{2015,0}就是一個(gè)好的集合.

(1)集合{2015}_____好的集合,集合{﹣1,2016}_____好的集合(兩空均填“是”或“不是”);

(2)若一個(gè)好的集合中最大的一個(gè)元素為4011,則該集合是否存在最小的元素?如果存在,請(qǐng)直接寫出答案,否則說(shuō)明理由;

(3)若一個(gè)好的集合所有元素之和為整數(shù)M,且22161<M<22170,則該集合共有幾個(gè)元素?說(shuō)明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)軸上點(diǎn)A對(duì)應(yīng)的數(shù)為,點(diǎn)B對(duì)應(yīng)的數(shù)為,且多項(xiàng)式的二次項(xiàng)系數(shù)為,常數(shù)項(xiàng)為.

(1)直接寫出:

(2)數(shù)軸上點(diǎn)A、B之間有一動(dòng)點(diǎn)P,若點(diǎn)P對(duì)應(yīng)的數(shù)為,試化簡(jiǎn);

(3)若點(diǎn)M從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右移動(dòng);同時(shí)點(diǎn)N從點(diǎn)B出發(fā),沿?cái)?shù)軸每秒2個(gè)單位長(zhǎng)度的速度向左移動(dòng),到達(dá)A點(diǎn)后立即返回并向右繼續(xù)移動(dòng),求經(jīng)過(guò)多少秒后,M、N兩點(diǎn)相距1個(gè)單位長(zhǎng)度?

查看答案和解析>>

同步練習(xí)冊(cè)答案