【題目】如圖,在正方形ABCD中,E是對角線BD上一點,且滿足連接CE并延長交AD于點F,連接AE,過B點作于點G,延長BG交AD于點在下列結論中:
;;,其中正確的結論有
A.B.C.D.
【答案】B
【解析】
先判斷出∠DAE=∠ABH,再判斷△ADE≌△CDE得出∠DAE=∠DCE=22.5°,∠ABH=∠DCF,再判斷出Rt△ABH≌Rt△DCF從而得到①正確,根據三角形的外角求出∠AEF=45°,得出②正確;連接HE,判斷出S△EFH≠S△EFD得出③錯誤.
∵BD是正方形ABCD的對角線,
∴∠ABE=∠ADE=∠CDE=45°,AB=BC,
∵BE=BC,
∴AB=BE,
∵BG⊥AE,
∴BH是線段AE的垂直平分線,∠ABH=∠DBH=22.5°,
在Rt△ABH中,∠AHB=90°-∠ABH=67.5°,
∵∠AGH=90°,
∴∠DAE=∠ABH=22.5°,
在△ADE和△CDE中
,
∴△ADE≌△CDE,
∴∠DAE=∠DCE=22.5°,
∴∠ABH=∠DCF,
在Rt△ABH和Rt△DCF中
,
∴Rt△ABH≌Rt△DCF,
∴AH=DF,∠CFD=∠AHB=67.5°,
∵∠CFD=∠EAF+∠AEF,
∴67.5°=22.5°+∠AEF,
∴∠AEF=45°,故①②正確;
如圖,連接HE,
∵BH是AE垂直平分線,
∴AG=EG,
∴S△AGH=S△HEG,
∵AH=HE,
∴∠AHG=∠EHG=67.5°,
∴∠DHE=45°,
∵∠ADE=45°,
∴∠DEH=90°,∠DHE=∠HDE=45°,
∴EH=ED,
∴△DEH是等腰直角三角形,
∵EF不垂直DH,
∴FH≠FD,
∴S△EFH≠S△EFD,
∴S四邊形EFHG=S△HEG+S△EFH=S△AHG+S△EFH≠S△DEF+S△AGH,故③錯誤,
∴正確的是①②,
故選:B.
科目:初中數學 來源: 題型:
【題目】某興趣小組為了了解本校男生參加課外體育鍛煉情況,隨機抽取本校300名男生進行了問卷調查,統(tǒng)計整理并繪制了如下兩幅尚不完整的統(tǒng)計圖.
請根據以上信息解答下列問題:
(1)課外體育鍛煉情況扇形統(tǒng)計圖中,“經常參加”所對應的圓心角的度數為________;
(2)請補全條形統(tǒng)計圖;
(3)該校共有1200名男生,請估計全校男生中經常參加課外體育鍛煉并且最喜歡的項目是籃球的人數;
(4)小明認為“全校所有男生中,課外最喜歡參加的運動項目是乒乓球的人數約為1200×=108”,請你判斷這種說法是否正確,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知一元二次方程ax2+bx+c=0(a≠0)中,下列說法:
①若a+b+c=0,則b2﹣4ac>0;
②若方程兩根為﹣1和2,則2a+c=0;
③若方程ax2+c=0有兩個不相等的實根,則方程ax2+bx+c=0必有兩個不相等的實根;
④若b=2a+c,則方程有兩個不相等的實根.其中正確的有( 。
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AF為⊙O的直徑,點B在AF的延長線上,BE切⊙O于點E,過點A作AC⊥BE,交BE的延長線交于點C,交⊙O交于點D,連接AE,EF,FD,DE.
(1)求證:EF=ED.
(2)求證:DFAF=2AEEF.
(3)若AE=4,DE=2,求sin∠DFA的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】連接多邊形任意兩個不相鄰頂點的線段稱為多邊形的對角線.
(1)
對角線條數分別為 、 、 、 .
(2)n邊形可以有20條對角線嗎?如果可以,求邊數n的值;如果不可以,請說明理由.
(3)若一個n邊形的內角和為1800°,求它對角線的條數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在中,點O是AC邊上的一個動點,過點O作直線,設MN交的角平分線于點E,交的外角平分線于點F.
求證:;
當點O運動到何處時,四邊形AECF是矩形?請說明理由;
在的條件下,給再添加一個條件,使四邊形AECF是正方形,那么添加的條件是______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的方程x2+ax+a﹣2=0.
(1)求證:不論a取何實數,該方程都有兩個不相等的實數根;
(2)若該方程的一個根為1,求a的值及該方程的另一根.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】.如圖,在RT△ABC中,∠C=90°,BC=8,AC=6,動點Q從B點開始在線段BA上以每秒2個單位長度的速度向點A移動,同時點P從A點開始在線段AC上以每秒1個單位長度的速度向點C移動.當一點停止運動,另一點也隨之停止運動.設點Q,P移動的時間為t秒.當t=____________ 秒時△APQ與△ABC相似.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com