如圖,AB⊥BD,ED⊥BD,CB=CD,判定△ABC≌△EDC的理由是( 。
分析:首先根據(jù)AB⊥BD,ED⊥BD可得∠ABC=∠EDC,再加上條件CB=CD,對(duì)頂角∠ACB=∠ECD可利用ASA證明△ABC≌△EDC.
解答:解:∵AB⊥BD,ED⊥BD,
∴∠ABC=∠EDC=90°,
在△ABC和△EDC中,
∠ABC=∠EDC
CB=CD
∠ACB=∠ECD
,
∴△ABC≌△EDC(ASA),
故選:A.
點(diǎn)評(píng):本題考查三角形全等的判定方法,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,AB⊥BD,CD⊥BD,垂足分別為B、D,AD和BC相交于點(diǎn)E,EF⊥BD,垂足為F,我們可以證明
1
AB
+
1
CD
=
1
EF
成立(不要求考生證明).
若將圖中的垂線改為斜交,如圖,AB∥CD,AD,BC相交于點(diǎn)E,過(guò)點(diǎn)E作EF∥AB交BD于點(diǎn)F,則:
(1)
1
AB
+
1
CD
=
1
EF
還成立嗎?如果成立,請(qǐng)給出證明;如果不成立,請(qǐng)說(shuō)明理由;
(2)請(qǐng)找出S△ABD,S△BED和S△BDC間的關(guān)系式,并給出證明.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,AB⊥BD,CD⊥BD,AB=6cm,CD=4cm,BD=14cm,點(diǎn)P在直線BD上,由B點(diǎn)到D點(diǎn)移動(dòng),
(1)當(dāng)P點(diǎn)移動(dòng)到離B點(diǎn)多遠(yuǎn)時(shí),△ABP∽△PDC;
(2)當(dāng)P點(diǎn)移動(dòng)到離B多遠(yuǎn)時(shí),∠APC=90°?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB⊥BD于點(diǎn)B,ED⊥BD于點(diǎn)D,AE交BD于點(diǎn)C,且BC=DC.求證:AB=ED.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB=BD,BC=BE,∠ABD=∠EBC,則有
△ABC
△ABC
△DBE
△DBE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB⊥BD,CD⊥BD,AD=CB.求證:AD∥BC.

查看答案和解析>>

同步練習(xí)冊(cè)答案