【題目】如圖,在平面直角坐標(biāo)系中,網(wǎng)格中每一個(gè)小正方形的邊長(zhǎng)為1個(gè)單位長(zhǎng)度
(1) 請(qǐng)?jiān)谒o的網(wǎng)格內(nèi)畫(huà)出以線段AB、BC為邊的□ABCD并寫(xiě)出點(diǎn)D的坐標(biāo)_________
(2) 線段BD的長(zhǎng)為_____________
(3) 點(diǎn)C到AB的距離為_________
【答案】(1)(-2,1);(2);(3)
【解析】
(1)用平移的方法畫(huà)出圖形,根據(jù)圖形,寫(xiě)出點(diǎn)D的坐標(biāo)(-2,1;)
(2)根據(jù)勾股定理求出BD的長(zhǎng);
(3)設(shè)點(diǎn)C到AB的距離為x,根據(jù)點(diǎn)A、B、C的坐標(biāo)求出AC、AB的長(zhǎng),利用△ABC的面積,即可求出點(diǎn)C到AB的距離.
解:(1)□ABCD如圖所示:
由題意,可知點(diǎn)D坐標(biāo)為(-2,1)
(2)由題意,可知點(diǎn)C坐標(biāo)為(2,0),點(diǎn)A坐標(biāo)為(-1,-3),點(diǎn)B坐標(biāo)為(3,-4),點(diǎn)D坐標(biāo)為(-2,1),則線段BD的長(zhǎng)為
(4) 設(shè)點(diǎn)C到AB的距離為x
∵點(diǎn)C坐標(biāo)為(2,0),點(diǎn)A坐標(biāo)為(-1,-3),
∴線段AC的長(zhǎng)為
又∵點(diǎn)A坐標(biāo)為(-1,-3),點(diǎn)B坐標(biāo)為(3,-4),
∴線段AB的長(zhǎng)為
又∵□ABCD為菱形,
∴
解得x=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)(3分)如圖(1),正方形AEGH的頂點(diǎn)E、H在正方形ABCD的邊上,直接寫(xiě)出HD∶GC∶EB的結(jié)果(不必寫(xiě)計(jì)算過(guò)程);
(2)(3分)將圖(1)中的正方形AEGH繞點(diǎn)A旋轉(zhuǎn)一定角度,如圖(2),求HD∶GC∶EB;
(3)(2分)把圖(2)中的正方形都換成矩形,如圖(3),且已知DA∶AB=HA∶AE=m: n,此時(shí)HD∶GC∶EB的值與(2)小題的結(jié)果相比有變化嗎?如果有變化,直接寫(xiě)出變化后的結(jié)果(不必寫(xiě)計(jì)算過(guò)程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)A,O,B依次在直線MN上.將射線OA繞點(diǎn)O沿順時(shí)針?lè)较蛞悦棵?/span>18°的速度旋轉(zhuǎn),同時(shí)射線OB繞點(diǎn)O沿順時(shí)針?lè)较蛞悦棵?/span>6°的速度旋轉(zhuǎn)(如圖2).設(shè)旋轉(zhuǎn)時(shí)間為t(0≤t≤30,單位秒).
(1)當(dāng)t=10時(shí),∠AOB= °;
(2)在旋轉(zhuǎn)過(guò)程中是否存在這樣的t,使得射線OM是由射線OB、射線OA組成的角(指大于0°而不超過(guò)180°的角)的平分線?如果存在,請(qǐng)求出t的值;如果不存在,請(qǐng)說(shuō)明理由.
(3)在運(yùn)動(dòng)過(guò)程中,當(dāng)∠AOB=45°時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)軸上點(diǎn)A表示-3,點(diǎn)B表示4.
(1)點(diǎn)A與點(diǎn)B之間的距離是 ;
(2)我們知道,在數(shù)軸上|a|表示數(shù)a所對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離,你能說(shuō)明在數(shù)軸上表示的意義嗎?
(3)在數(shù)軸上點(diǎn)P表示的數(shù)為x,是否存在這樣的點(diǎn)P,使2PA+PB=12?若存在,請(qǐng)求出相應(yīng)的x;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB與CD相交于O.OF是∠BOD的平分線,OE⊥OF.
(1)若∠BOE比∠DOF大38°,求∠DOF和∠AOC的度數(shù);
(2)試問(wèn)∠COE與∠BOE之間有怎樣的大小關(guān)系?請(qǐng)說(shuō)明理由.
(3)∠BOE的余角是 ,∠BOE的補(bǔ)角是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】方程﹣3=的根,比關(guān)于x的方程2﹣(a﹣x)=2x的根的2倍還多4.5,求關(guān)于x的方程a(x﹣5)﹣2=a(2x﹣3)的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】股民李明上星期六買(mǎi)進(jìn)春蘭公司股票1000股,每股27元.下表為本周內(nèi)每日該股票的漲跌情況(單位:元)(注:本周一股票漲跌是在上周六的基礎(chǔ)上,用正數(shù)記股價(jià)比前一日上升數(shù),用負(fù)數(shù)記股價(jià)比前一日下降數(shù))
星期 | 一 | 二 | 三 | 四 | 五 | 六 |
每股漲跌 | +4 | +4.5 | -1 | -2.5 | -6 | +2 |
(1)星期三收盤(pán)時(shí),每股是多少元?
(2)本周內(nèi)最高價(jià)是每股多少元?最低價(jià)每股多少元?
(3)己知李明買(mǎi)進(jìn)股票時(shí)付了0.15%的手續(xù)費(fèi),賣(mài)出時(shí)需付成交額0.15%的手續(xù)費(fèi)和0.1%的交易稅,如果李明在星期六收盤(pán)前將全部股票賣(mài)出,他的收益情況如何?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們約定:64 2 2 2 2 2 2可表示成f (6)64,也可表示成g(64)6,
(1)求:f (8) ;
(2)求:g(512);
(3)求:gf (x) (x 為正整數(shù));
(4)f (x y) f (x) f ( y)(x,y 是正整數(shù))成立嗎?為什么?
(5)x,y 分別表示若干個(gè)2相乘的積,類(lèi)比④你能寫(xiě)出與 g 相關(guān)的等式嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料:在分式中,對(duì)于只含有一個(gè)字母的分式,當(dāng)分子的次數(shù)小于分母的次數(shù)時(shí),我們稱(chēng)之為“真分式”,如:。當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時(shí),我們稱(chēng)之為“假分式”,如:。假分式可以化為整式與真分式和的形式,我們也稱(chēng)之為帶分式,如:。
解決問(wèn)題:
(1)下列分式中屬于真分式的是( )
A. B. C. D.
(2)將假分式分別化為帶分式;
(3)若假分式的值為整數(shù),請(qǐng)直接寫(xiě)出所有符合條件的整數(shù)x的值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com