【題目】如圖, ABCD 為正方形, O 為 AC 、 BD 的交點,在中, 90, 30,若OE ,則正方形的面積為( )
A. 5B. 4C. 3D. 2
【答案】B
【解析】
過點O作OM⊥CE于M,作ON⊥DE交ED的延長線于N,判斷出四邊形OMEN是矩形,根據(jù)矩形的性質(zhì)可得∠MON=90°,再求出∠COM=∠DON,根據(jù)正方形的性質(zhì)可得OC=OD,然后利用“角角邊”證明△COM和△DON全等,根據(jù)全等三角形對應(yīng)邊相等可得OM=ON,然后判斷出四邊形OMEN是正方形,設(shè)正方形ABCD的邊長為,根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半可得DE=CD,再利用勾股定理列式求出CE,根據(jù)正方形的性質(zhì)求出OC=OD=a,然后利用四邊形OCED的面積列出方程求出,再根據(jù)正方形的面積公式列式計算即可得解.
解:如圖,過點O作OM⊥CE于M,作ON⊥DE交ED的延長線于N,
∵∠CED=90°,
∴四邊形OMEN是矩形,
∴∠MON=90°,
∵∠COM+∠DOM=∠DON+∠DOM,
∴∠COM=∠DON,
∵四邊形ABCD是正方形,
∴OC=OD,
在△COM和△DON中,
,
∴△COM≌△DON(AAS),
∴OM=ON,
∴四邊形OMEN是正方形,
設(shè)正方形ABCD的邊長為,則OC=OD=
∵∠CED=90°,∠DCE=30°,
∴DE=CD=,
由勾股定理得,CE= ,
∴四邊形OCED的面積=,
解得,
所以,正方形ABCD的面積=.
故選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】)6月5日是世界環(huán)境日,某校組織了一次環(huán)保知識競賽,每班選25名同學(xué)參加比賽,成績分別為A、B、C、D四個等級,其中相應(yīng)等級的得分依次記為100分、90分、80分、70分,學(xué)校將某年級的一班和二班的成績整理并繪制成如下統(tǒng)計圖:
根據(jù)以上提供的信息解答下列問題:
(1)把一班競賽成績統(tǒng)計圖補充完整;
(2)寫出下表中a,b,c的值:
平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) | |
一班 | a | b | 90 |
二班 | 87.6 | 80 | c |
(3)請從以下給出的三個方面對這次競賽成績的結(jié)果進行分析:
①從平均數(shù)和中位數(shù)方面比較一班和二班的成績;
②從平均數(shù)和眾數(shù)方面比較一班和二班的成績;
③從B級以上(包括B級)的人數(shù)方面來比較一班和二班的成績.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一組數(shù)據(jù)a、b、c、d. e方差為3,則另一組數(shù)據(jù)a+3,b+3,c+3,d+3,e+3的方差為___ ,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,并解答問題:
阿基米德與國王下棋,國王輸了,國王問阿基米德要什么獎賞?阿基米德對國王說:“我只要在棋盤上第一格放一粒米,第二格放二粒,第三格放四粒,第四格放八....按這個方法放滿整個棋盤就行.”國王以為要不了多少糧食,就隨口答應(yīng)了.
(1)國際象棋的棋盤共有個格子,則在第格中應(yīng)放 粒米.(用冪表示)
(2)請?zhí)骄康?/span>(1)題中的冪的個位數(shù)字是多少?(簡要寫出探究過程)
(3)你知道國王輸給了阿基米德多少粒米嗎?為解決這個問題,我們先來看下面的解題過程:
“用分?jǐn)?shù)表示無限循環(huán)小數(shù):
解:設(shè).等式兩邊同時乘,
得.
將得:,
則
請參照以上解法求出國王輸給阿基米德的米粒數(shù).(用冪的形式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點是菱形邊上的一動點,它從點出發(fā)沿在路徑勻速運動到點,設(shè)的面積為,點的運動時間為,則關(guān)于的函數(shù)圖象大致為
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,四邊形是矩形,點,點,點.以點為中心,順時針旋轉(zhuǎn)矩形,得到矩形,點,,的對應(yīng)點分別為,,.
(Ⅰ)如圖①,當(dāng)點落在邊上時,求點的坐標(biāo);
(Ⅱ)如圖②,當(dāng)點落在線段上時,與交于點.
①求證;
②求點的坐標(biāo).
(Ⅲ)記為矩形對角線的交點,為的面積,求的取值范圍(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,OC是BO的延長線,OF平分∠AOD,∠AOE=35.
(1)求∠EOC的度數(shù);
(2)求∠BOF的度數(shù);
(3)請你寫出圖中三對相等的角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯誤的有( )
①是次多項式,是次多項式(和都是正整數(shù)),則和一定都是次多項式;②分式方程無解,則分式方程去分母后所得的整式方程無解;③為正整數(shù));④分式的分子和分母都乘以(或除以)同一個整數(shù),分式的值不變
A.個B.個C.個D.個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】重慶市某商場通過互聯(lián)網(wǎng)銷售某品牌新型臺燈,第一周的總銷售額為4000元,第二周的總銷售額為4520元,第二周比第一周多售出13盞臺燈.
(1)求每盞臺燈的售價;
(2)該公司在第三周將每盞臺燈的售價降低了,并預(yù)計第三周能售出140盞燈恰逢期末考試,極大的提高了中學(xué)生使用臺燈的數(shù)量,該款臺燈在第三周的銷量比預(yù)計的140盞還多了.已知每盞臺燈的成本為16元,該公司第三周銷售臺燈的總利潤為5040元,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com