【題目】如圖,在△ABC中,∠A=90°,∠C=30°,AD⊥BC于D,BE是∠ABC的平分線,且交AD于P,如果AP=2,則AC的長為( )
A. 2 B. 4 C. 6 D. 8
【答案】C
【解析】
易得△AEP的等邊三角形,則AE=AP=2,在直角△AEB中,利用含30度角的直角三角形的性質(zhì)來求EB的長度,然后在等腰△BEC中得到CE的長度,則易求AC的長度.
解:∵△ABC中,∠BAC=90°,∠C=30°,
∴∠ABC=60°.
又∵BE是∠ABC的平分線,
∴∠EBC=30°,
∴∠AEB=∠C+∠EBC=60°,∠C=∠EBC,
∴∠AEP=60°,BE=EC.
又AD⊥BC,
∴∠CAD=∠EAP=60°,
則∠AEP=∠EAP=60°,
∴△AEP的等邊三角形,則AE=AP=2,
在直角△AEB中,∠ABE=30°,則EB=2AE=4,
∴BE=EC=4,
∴AC=CE+AE=6.
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,在△ABC中,BD,CD分別平分∠ABC,∠ACB,過點D作EF∥BC交AB,AC于點E,F(xiàn),試說明BE+CF=EF的理由;
(2)如圖2,BD,CD分別平分∠ABC,∠ACG,過點D作EF∥BC交AB,AC于點E,F(xiàn),則BE,CF,EF有怎樣的數(shù)量關系?并說明你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算下面各題
①﹣40﹣28﹣(﹣19)+(﹣24)
②(﹣1)×(﹣10)÷|﹣0.7|
③﹣32﹣4×(﹣3)+15÷(﹣3)
④3x2﹣[7x﹣(4x﹣3)﹣2x2]
⑤5(a2b﹣3ab2)﹣2(a2b﹣7ab2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在等邊△ABC中,D是AC邊上一點,連接BD,將△BCD繞點B逆時針旋轉(zhuǎn)60°得到△BAE,連接ED,若BC=5,BD=4,有下列結(jié)論:①AE∥BC;②∠ADE=∠BDC;③△BDE是等邊三角形;④△ADE的周長是9.其中正確的個數(shù)是( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為了測量出樓房AC的高度,從距離樓底C處60 米的點D(點D與樓底C在同一水平面上)出發(fā),沿斜面坡度為i=1: 的斜坡DB前進30米到達點B,在點B處測得樓頂A的仰角為53°,求樓房AC的高度(參考數(shù)據(jù):sin53°= ,cos = ,tan53°= , ≈1.732,結(jié)果精確到0.1米)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探究題.
已知:如圖.
求證:
老師要求學生在完成這道教材上的題目證明后,嘗試對圖形進行變式,繼續(xù)做拓展探究,看看有什么新發(fā)現(xiàn)?
(1)小穎首先完成了對這道題的證明,在證明過程中她用到了平行線的一條性質(zhì),小穎用到的平行線性質(zhì)可能是_________.
(2)接下來,小穎用《幾何畫板》對圖形進行了變式,她先畫了兩條平行線然后在平行線間畫了一點,連接后,用鼠標拖動點分別得到了圖①②③,小穎發(fā)現(xiàn)圖②正是上面題目的原型,于是她由上題的結(jié)論猜想到圖①和③中的與之間也可能存在著某種數(shù)量關系于是她利用《幾何畫板》的度量與計算功能,找到了這三個角之間的數(shù)量關系.
請你在小穎操作探究的基礎上,繼續(xù)完成下面的問題:
①猜想圖①中與之間的數(shù)量關系并加以證明:
②補全圖③,直接寫出與之間的數(shù)量關系:_______.
(3)學以致用:一個小區(qū)大門欄桿的平面示意圖如圖所示,垂直地面于平行于地面
,若,則_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x、y的方程組 ,給出下列說法:
①當a=1時,方程組的解也是方程x+y=2的一個解;
②當x﹣2y>8時,a> ;
③不論a取什么實數(shù),2x+y的值始終不變;
④若y=x2+5,則a=﹣4. 以上說法正確的是( )
A.②③④
B.①②④
C.③④
D.②③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com