【題目】如圖,在四邊形ABCD中,AB∥DC,AB=AD,對角線AC,BD交于點O,AC平分∠BAD,過點C作CE⊥AB交AB的延長線于點E,連接OE.
(1)求證:四邊形ABCD是菱形;
(2)若AB=,BD=2,求OE的長.
【答案】(1)見解析;(2)OE=2.
【解析】
(1)先判斷出∠OAB=∠DCA,進而判斷出∠DAC=∠DAC,得出CD=AD=AB,即可得出結(jié)論;
(2)先判斷出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出結(jié)論.
解:(1)∵AB∥CD,
∴∠OAB=∠DCA,
∵AC為∠DAB的平分線,
∴∠OAB=∠DAC,
∴∠DCA=∠DAC,
∴CD=AD=AB,
∵AB∥CD,
∴四邊形ABCD是平行四邊形,
∵AD=AB,
∴ABCD是菱形;
(2)∵四邊形ABCD是菱形,
∴OA=OC,BD⊥AC,∵CE⊥AB,
∴OE=OA=OC,
∵BD=2,
∴OB=BD=1,
在Rt△AOB中,AB=,OB=1,
∴OA==2,
∴OE=OA=2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,B,P,A,C是圓上的點,PB= PC, PD⊥CD,CD交⊙O于A,若AC=AD,PD =,sin∠PAD =,則△PAB的面積為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為綠化校園,安排七年級三個班植樹,其中,一班植樹x棵,二班植樹的棵數(shù)是一班的2倍少20棵,三班植樹的棵數(shù)是二班的一半多15棵.
(1)三個班共植樹多少棵?(用含x的式子表示)
(2)當x=30時,三個班中哪個班植樹最多?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)有一列數(shù)a1,a2,a3,…,a98,a99,a100,其中a3=2020,a7=-2018,a98=-1,且滿足任意相鄰三個數(shù)的和為常數(shù),則a1+a2+a3+…+a98+a99+a100的值為( )
A.1985B.-1985C.2019D.-2019
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】.如圖,矩形ABCD中,O為AC中點,過點O的直線分別與AB、CD交于點E、F,連結(jié)BF交AC于點M,連結(jié)DE、BO.若∠COB=60°,FO=FC,則下列結(jié)論:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正確結(jié)論的個數(shù)是( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(大豐某校數(shù)學興趣小組活動場景)
(課堂再現(xiàn))
師:同學們還記得教材P43分配律a(b+c)=ab+ac嗎?現(xiàn)在,老師和大家一起來用幾何的方法來證明這個公式。相信今天會驚喜不斷。(學生期待驚喜中………),
(教者呈現(xiàn)教具)老師手上有兩個長方形,長分別是b、c,寬都是a,(如圖1)它們各自面積是多少?
生1:面積分別為ab、ac。
師:現(xiàn)在我們把它們拼在一起(如圖2),組成了一個新長方形,新長方形面積又是多少呢?
生2:
師:所以……
生3:所以得到,也就是說(真好玩。
師:相信大家能用類似方法來推導(dǎo)一個我們暫時還沒學習的公式,老師期待大家給我的驚喜哦。ㄆ聊簧铣尸F(xiàn)問題)
(拓展延伸)
將邊長為a的正方形紙板上剪去一個邊長為b的正方形(如圖3),將剩余的紙板沿虛線剪開,拼成如圖4的梯形。
(1)你能得到一個什么等式.(用含a、b的式子表示)
(再接再厲)
(2)直接運用上面你發(fā)現(xiàn)的公式完成運算:
(拓展提高)
(3)直接運用上面你發(fā)現(xiàn)的公式解下列方程:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算
(1)8÷(﹣2)2﹣4×(﹣3)﹣|﹣6|
(2)( )×(﹣12)
(3)(4x+2y)-3(x-2y)
(4)4ab2-3[a2b-2(a2b-2ab2)]
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠車間為了了解工人日均生產(chǎn)能力的情況,隨機抽取10名工人進行測試,將獲得數(shù)據(jù)制成如下統(tǒng)計圖.
(1)求這10名工人的日均生產(chǎn)件數(shù)的平均數(shù)、眾數(shù)、中位數(shù);
(2)若日均生產(chǎn)件數(shù)不低于12件為優(yōu)秀等級,該工廠車間共有工人120人,估計日均生產(chǎn)能力為“優(yōu)秀”等級的工人約為多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC邊上的兩個動點,其中點P從點A開始沿A→B方向運動,且速度為每秒1cm,點Q從點B開始沿B→C→A方向運動,且速度為每秒2cm,它們同時出發(fā),設(shè)出發(fā)的時間為t秒.
(1)出發(fā)2秒后,求PQ的長;
(2)當點Q在邊BC上運動時,出發(fā)幾秒鐘,△PQB能形成等腰三角形?
(3)當點Q在邊CA上運動時,求能使△BCQ成為等腰三角形的運動時間;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com