如圖,⊙O的直徑AB=4,C為圓周上一點,AC=2,過點C作⊙O的切線DC,P點為優(yōu)弧CBA上一點(不與A、C重合)
(1)求∠APC與∠ACD的度數(shù);
(2)當點P移動到弧CB的中點時,四邊形OBPC是什么特殊的四邊形,說明理由.

解:(1)連接AC,如圖所示:
∵AC=2,OA=OB=OC=AB=2,
∴AC=OA=OC,
∴△ACO為等邊三角形,
∴∠AOC=∠ACO=∠OAC=60°,
∴∠APC=∠AOC=30°,
又DC與圓O相切于點C,
∴OC⊥DC,
∴∠DCO=90°,
∴∠ACD=∠DCO-∠ACO=90°-60°=30°;
(2)當點P移動到弧CB的中點時,四邊形OBPC是菱形,
理由如下:
連接PB,OP,
∵AB為直徑,∠AOC=60°,
∴∠COB=120°,
當點P移動到CB的中點時,∠COP=∠POB=60°,
∴△COP和△BOP都為等邊三角形,
∴OC=CP=OB=PB,
則四邊形OBPC為菱形.
分析:(1)連接AC,由直徑AB=4,得到半徑OA=OC=2,又AC=2,得到AC=OC=OA,即三角形AOC為等邊三角形,可得出三個內角都為60°,再由同弧所對的圓心角等于所對圓周角的2倍,得到∠APC為30°,由CD為圓O的切線,得到OC垂直于CD,可得出∠OCD為直角,用∠OCD-∠OCA可得出∠ACD的度數(shù);
(2)當點P移動到弧CB的中點時,四邊形OBPC是菱形,由∠AOC為60°,AB為圓O的直徑,得到∠BOC=120°,再由P為弧BC的中點,得到兩條弧相等,根據(jù)等弧對等角,可得出∠COP=∠BOP=60°,進而得到三角形COP與三角形BOP都為等邊三角形,可得出OC=OB=PC=PB,即四邊形OBPC為菱形.
點評:此題考查切線的性質,菱形的判定,等邊三角形的判定與性質,以及弧、圓心角及弦之間的關系,熟練掌握性質與判定是解本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,⊙O的直徑AB與弦CD相交于E,
BC
=
BD
,⊙O的切線BF與弦AD的延長線相交于點F.
(1)求證:CD∥BF.
(2)連接BC,若⊙O的半徑為4,cos∠BCD=
3
4
,求線段AD、CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙O的直徑AB與弦CD(不是直徑)相交于E,E是CD的中點,過點B作BF∥CD交AD的延長線于
點F.
(1)求證:BF是⊙O的切線;
(2)連接BC,若⊙O的半徑為5,∠BCD=38°,求線段BF、BC的長.(精確到0.1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,⊙O的直徑AB,CD互相垂直,P為  上任意一點,連PC,PA,PD,PB,下列結論:
①∠APC=∠DPE;
 ②∠AED=∠DFA;
CP+DP
BP+AP
=
AP
DP
.其中正確的個數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•柳州)如圖,⊙O的直徑AB=6,AD、BC是⊙O的兩條切線,AD=2,BC=
92

(1)求OD、OC的長;
(2)求證:△DOC∽△OBC;
(3)求證:CD是⊙O切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,⊙O的直徑AB垂直弦CD于P,且P是半徑OB的中點,CD=6cm,則直徑AB的長是
4
3
cm
4
3
cm

查看答案和解析>>

同步練習冊答案