.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
在一個(gè)不透明的盒子里,裝有四個(gè)分別標(biāo)有數(shù)字1,2,3,4的小球,它們的形狀、大小、質(zhì)地等完全相同.小明先從盒子里隨機(jī)取出一個(gè)小球,記下數(shù)字為x;不放回盒子,再由小華隨機(jī)取出一個(gè)小球,記下數(shù)字為y.
1.用列表法或畫樹狀圖表示出(x,y)的所有可能出現(xiàn)的結(jié)果;
2.求小明、小華各取一次小球所確定的點(diǎn)(x,y)落在的圖象上的概率;
3.求小明、小華各取一次小球所確定的數(shù)x、y滿足的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,正方形網(wǎng)格中的每個(gè)小正方形的邊長都相等.△ABC的三個(gè)頂點(diǎn)A,B,C都在格點(diǎn)上,若格點(diǎn)D 在△ABC外接圓上,則圖中符合條件的點(diǎn)D有 ▲ 個(gè)(點(diǎn)D與點(diǎn)A,B,C均不重合).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
觀察下列圖形:若圖形(1)中陰影部分的面積為1,圖形(2)中陰影部分的面積為,圖形(3)中陰影部分的面積為,圖形(4)中陰影部分的面積為,…,則第個(gè)圖形中陰影部分的面積用字母表示為【▲】
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系中,直線與軸、軸分別交于、兩點(diǎn),把直線沿過點(diǎn)的直線翻折,使與軸上的點(diǎn)重合,折痕與軸交于點(diǎn),則直線的解析式為______________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,四邊形ABCD是平行四邊形,EF分別是BC、AD上的點(diǎn),∠1=∠2.
求證:△ABE≌△CDF.
【解析】利用AAS求證全等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
等邊△ABC邊長為6,P為BC邊上一點(diǎn),∠MPN=60°,且PM、PN分別于邊AB、AC交于點(diǎn)E、F.(1)如圖1,當(dāng)點(diǎn)P為BC的三等分點(diǎn),且PE⊥AB時(shí),判斷△EPF的形狀;
(2)如圖2,若點(diǎn)P在BC邊上運(yùn)動,且保持PE⊥AB,設(shè)BP=x,四邊形AEPF面積的y,求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)如圖3,若點(diǎn)P在BC邊上運(yùn)動,且∠MPN繞點(diǎn)P旋轉(zhuǎn),當(dāng)CF=AE=2時(shí),求PE的長.
【解析】(1)要證三角形EPF是等邊三角形,已知了∠EPF=60°,主要再證得PE=PF即可,可通過證三角形PBE和PFC全等來得出結(jié)論,再證明全等過程中,可通過證明FP⊥BC和BE=PC來實(shí)現(xiàn);
(2)根據(jù)△ABC的面積-△BEP的面積-△CFP的面積=四邊形AEPF面積求解
(3)由相似三角形的判定定理得出△BPE∽△CFP,設(shè)BP=x,則CP=6-x,由相似三角形的對應(yīng)邊成比例可求出x的值,再根據(jù)勾股定理求出PE的值即可
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com