【題目】如圖,四邊形ABCD是⊙O的內接四邊形, AC為直徑, DEBC,垂足為E

1)求證:CD平分∠ACE

2)若AC9,CE3,求CD的長.

【答案】1)證明見解析;(2CD=3

【解析】試題分析:1根據(jù)圓周角定理,由AD=BD可得∠BAD=∠ACD,再根據(jù)圓內接四邊形的性質得DCE=∠BAD,所以ACD=∠DCE;

2先證明DCEACD,再根據(jù)相似三角形的性質列比例式求解.

證明:(1)∵四邊形ABCD是⊙O內接四邊形,∴∠BAD+∠BCD180°,

∵∠BCDDCE180°,∴∠DCEBAD,

∴∠BADACD,

∴∠DCEACD

CD平分∠ACE

2AC為直徑,∴∠ADC90°,

DEBC∴∠DEC90°,∴∠DECADC…

∵∠DCEACD,DCEACD,

=,即=

CD=3

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某市公交公司為應對春運期間的人流高峰,計劃購買A、B兩種型號的公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車3輛,共需650萬元,

(1)試問該公交公司計劃購買A型和B型公交車每輛各需多少萬元?

(2)若該公司預計在某條線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用W不超過1200萬元,且確保這10輛公交車在某條線路的年均載客量總和不少于680萬人次,則該公司有哪幾種購車方案?哪種購車方案的總費用W最少?最少總費用是多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形紙片ABCD中,已知AD =8,折疊紙片使AB邊與對角線AC

重合,點B落在點F處,折痕為AE,且EF=3,則AB的長為( )

A. 3 B. 4

C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為拓寬學生視野,引導學生主動適應社會,促進書本知識和生活經(jīng)驗的深度融合,我市某中學決定組織部分班級去赤壁開展研學旅行活動,在參加此次活動的師生中,若每位老師帶17個學生,還剩12個學生沒人帶;若每位老師帶18個學生,就有一位老師少帶4個學生.現(xiàn)有甲、乙兩種大客車,它們的載客量和租金如表所示.

甲種客車

乙種客車

載客量/(人/輛)

30

42

租金/(元/輛)

300

400

學校計劃此次研學旅行活動的租車總費用不超過3100元,為了安全,每輛客車上至少要有2名老師.

(1)參加此次研學旅行活動的老師和學生各有多少人?

(2)既要保證所有師生都有車坐,又要保證每輛客車上至少要有2名老師,可知租用客車總數(shù)為   輛;

(3)你能得出哪幾種不同的租車方案?其中哪種租車方案最省錢?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市射擊隊甲、乙兩名隊員在相同的條件下各射耙10次,每次射耙的成績情況如圖所示:

1)請將下表補充完整:

2)請從下列三個不同的角度對這次測試結果進行分析:

①從平均數(shù)和方差相結合看,  的成績好些;

②從平均數(shù)和中位數(shù)相結合看,  的成績好些;

③若其他隊選手最好成績在9環(huán)左右,現(xiàn)要選一人參賽,你認為選誰參加,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于實數(shù)a,b,我們可以用min{a,b}表示a,b兩數(shù)中較小的數(shù),例如min{3,-1}=-1,min{2,2}2. 類似地,若函數(shù)y1、y2都是x的函數(shù),則ymin{y1, y2}表示函數(shù)y1y2取小函數(shù)

1)設y1xy2,則函數(shù)ymin{x, }的圖像應該是 中的實線部分.

2)請在下圖中用粗實線描出函數(shù)ymin{(x2)2(x2)2}的圖像,并寫出該圖像的三條不同性質:

;

;

;

3)函數(shù)ymin{(x4)2, (x2)2}的圖像關于 對稱.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】快遞公司準備購買機器人來代替人工分揀已知購買- 臺甲型機器人比購買-臺乙型機器人多萬元;購買臺甲型機器人和臺乙型機器人共需萬元.

(1)求甲、乙兩種型號的機器人每臺的價格各是多少萬元;

(2)已知甲型、乙型機器人每臺每小時分揀快遞分別是件、件,該公司計劃最多用萬元購買臺這兩種型號的機器人.該公司該如何購買,才能使得每小時的分揀量最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是等邊三角形,AO⊥BC,垂足為點O,⊙O與AC相切于點D,BE⊥AB交AC的延長線于點E,與⊙O相交于G、F兩點.

(1)求證:AB與⊙O相切;

(2)若等邊三角形ABC的邊長是8,求線段BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把下列各數(shù)填在相應的大括號內:

﹣5,|-|,﹣12,0,﹣3.14,+1.99,﹣(﹣6),

(1)正數(shù)集合:{ …}

(2)負數(shù)集合:{ …}

(3)整數(shù)集合:{ …}

(4)分數(shù)集合:{ …}.

查看答案和解析>>

同步練習冊答案