(2006•龍巖)如圖,已知⊙O的半徑為5,弦AB=8,P是弦AB上一點(diǎn),且PB=2,則OP=   
【答案】分析:連接OB,作OM⊥AB與M.根據(jù)垂徑定理和勾股定理求解.
解答:解:連接OB,作OM⊥AB與M,則BM=4,PM=2,
在直角△OBM中,根據(jù)勾股定理得到:OM=3;
在直角△OPM中根據(jù)勾股定理得到:OP==
點(diǎn)評(píng):此題涉及圓中求半徑的問(wèn)題,此類(lèi)在圓中涉及弦長(zhǎng)、半徑、圓心角的計(jì)算的問(wèn)題,常把半弦長(zhǎng),半圓心角,圓心到弦距離轉(zhuǎn)換到同一直角三角形中,然后通過(guò)直角三角形予以求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2011年上海市中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2006•龍巖)如圖,已知拋物線y=-x2+bx+c與坐標(biāo)軸交于A,B,C三點(diǎn),點(diǎn)A的橫坐標(biāo)為-1,過(guò)點(diǎn)C(0,3)的直線y=-x+3與x軸交于點(diǎn)Q,點(diǎn)P是線段BC上的一個(gè)動(dòng)點(diǎn),PH⊥OB于點(diǎn)H.若PB=5t,且0<t<1.
(1)確定b,c的值;
(2)寫(xiě)出點(diǎn)B,Q,P的坐標(biāo)(其中Q,P用含t的式子表示);
(3)依點(diǎn)P的變化,是否存在t的值,使△PQB為等腰三角形?若存在,求出所有t的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2006•龍巖)如圖,已知拋物線y=-x2+bx+c與坐標(biāo)軸交于A,B,C三點(diǎn),點(diǎn)A的橫坐標(biāo)為-1,過(guò)點(diǎn)C(0,3)的直線y=-x+3與x軸交于點(diǎn)Q,點(diǎn)P是線段BC上的一個(gè)動(dòng)點(diǎn),PH⊥OB于點(diǎn)H.若PB=5t,且0<t<1.
(1)確定b,c的值;
(2)寫(xiě)出點(diǎn)B,Q,P的坐標(biāo)(其中Q,P用含t的式子表示);
(3)依點(diǎn)P的變化,是否存在t的值,使△PQB為等腰三角形?若存在,求出所有t的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年福建省漳州市詔安縣南城中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2006•龍巖)如圖,已知拋物線y=-x2+bx+c與坐標(biāo)軸交于A,B,C三點(diǎn),點(diǎn)A的橫坐標(biāo)為-1,過(guò)點(diǎn)C(0,3)的直線y=-x+3與x軸交于點(diǎn)Q,點(diǎn)P是線段BC上的一個(gè)動(dòng)點(diǎn),PH⊥OB于點(diǎn)H.若PB=5t,且0<t<1.
(1)確定b,c的值;
(2)寫(xiě)出點(diǎn)B,Q,P的坐標(biāo)(其中Q,P用含t的式子表示);
(3)依點(diǎn)P的變化,是否存在t的值,使△PQB為等腰三角形?若存在,求出所有t的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年福建省龍巖市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•龍巖)如圖,已知拋物線y=-x2+bx+c與坐標(biāo)軸交于A,B,C三點(diǎn),點(diǎn)A的橫坐標(biāo)為-1,過(guò)點(diǎn)C(0,3)的直線y=-x+3與x軸交于點(diǎn)Q,點(diǎn)P是線段BC上的一個(gè)動(dòng)點(diǎn),PH⊥OB于點(diǎn)H.若PB=5t,且0<t<1.
(1)確定b,c的值;
(2)寫(xiě)出點(diǎn)B,Q,P的坐標(biāo)(其中Q,P用含t的式子表示);
(3)依點(diǎn)P的變化,是否存在t的值,使△PQB為等腰三角形?若存在,求出所有t的值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案