【題目】如圖,在矩形ABCD 中,AB=2,點(diǎn)E 在邊AD 上,∠ABE=45°,BE=DE,連接BD,點(diǎn)P 在線段DE 上,過點(diǎn)P 作PQ∥BD 交BE 于點(diǎn)Q,連接QD.設(shè)PD=x,△PQD 的面積為y,則能表示y 與x 函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

【答案】D
【解析】解:∵∠ABE=45°,∠A=90°,
∴△ABE是等腰直角三角形,
∴AE=AB=2,BE=math>AB=2,
∵BE=DE,PD=x,
∴PE=DE-PD=2-x,
∵PQ∥BD,BE=DE,
∴QE=PE=2-x,
又∵△ABE是等腰直角三角形(已證),
∴點(diǎn)Q到AD的距離=(2-x)=2-x,
∴△PQD的面積y=x(2-x)=-(x2-2x+2-2)=-(x-2+
即y=-(x-2+,
縱觀各選項,只有D選項符合.
故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對角線BD經(jīng)過坐標(biāo)原點(diǎn),矩形的邊分別平行于坐標(biāo)軸,點(diǎn)C在反比例函數(shù) 的圖象上.若點(diǎn)A的坐標(biāo)為(﹣2,﹣2),則k的值為(
A.1
B.﹣3
C.4
D.1或﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)前,“校園手機(jī)”現(xiàn)象已經(jīng)受到社會廣泛關(guān)注,某數(shù)學(xué)興趣小組對“是否贊成中學(xué)生帶手機(jī)進(jìn)校園”的問題進(jìn)行了社會調(diào)查.小文將調(diào)查數(shù)據(jù)作出如下不完整的整理: 頻數(shù)分布表

看法

頻數(shù)

頻率

贊成

5

無所謂

0.1

反對

40

0.8


(1)請求出共調(diào)查了多少人;并把小文整理的圖表補(bǔ)充完整;
(2)小麗要將調(diào)查數(shù)據(jù)繪制成扇形統(tǒng)計圖,則扇形圖中“贊成”的圓心角是多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形OABC中,OA=5,AB=4,點(diǎn)D為邊AB上一點(diǎn),將△BCD沿直線CD折疊,使點(diǎn)B恰好落在邊OA上的點(diǎn)E處,分別以O(shè)C,OA所在的直線為x軸,y軸建立平面直角坐標(biāo)系.

(1)求OE的長及經(jīng)過O,D,C三點(diǎn)拋物線的解析式;
(2)一動點(diǎn)P從點(diǎn)C出發(fā),沿CB以每秒2個單位長度的速度向點(diǎn)B運(yùn)動,同時動點(diǎn)Q從E點(diǎn)出發(fā),沿EC以每秒1個單位長度的速度向點(diǎn)C運(yùn)動,當(dāng)點(diǎn)P到達(dá)點(diǎn)B時,兩點(diǎn)同時停止運(yùn)動,設(shè)運(yùn)動時間為t秒,當(dāng)t為何值時,DP=DQ;
(3)若點(diǎn)N在(1)中拋物線的對稱軸上,點(diǎn)M在拋物線上,是否存在這樣的點(diǎn)M與點(diǎn)N,使M,N,C,E為頂點(diǎn)的四邊形是平行四邊形?若存在,請求出M點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,直線CD切⊙O于點(diǎn)D,AM⊥CD于點(diǎn)M,BN⊥CD于N.
(1)求證:∠ADC=∠ABD;
(2)求證:AD2=AMAB;
(3)若AM= ,sin∠ABD= ,求線段BN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形 ABCD 中,AE 平分∠BAD,交 BC 于 E,過 E 做 EF⊥AD 于 F,連接BF交AE于P,連接PD.

(1)求證:四邊形ABEF 是正方形;
(2)如果AB=6,AD=8,求tan∠ADP的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,BE=EF=FC,CG=2GD,BG分別交AE,AF于M,N.下列結(jié)論:①AF⊥BG;②BN= NF;③ = ;④S四邊形CGNF= S四邊形ANGD . 其中正確的結(jié)論的序號是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將半徑為2,圓心角為120°的扇形OAB繞點(diǎn)A逆時針旋轉(zhuǎn)60°,點(diǎn)O,B的對應(yīng)點(diǎn)分別為O′,B′,連接BB′,則圖中陰影部分的面積是(
A.
B.2
C.2
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=5,BC=3,AC=4,以點(diǎn)C為圓心的圓與AB相切,則⊙C的半徑為(
A.2.3
B.2.4
C.2.5
D.2.6

查看答案和解析>>

同步練習(xí)冊答案