已知拋物線y=x2-mx+m-2.
(1)求證:此拋物線與x軸有兩個不同的交點;
(2)若m是整數(shù),拋物線y=x2-mx+m-2與x軸交于整數(shù)點,求m的值;
(3)在(2)的條件下,設(shè)拋物線的頂點為A,拋物線與x軸的兩個交點中右側(cè)交點為B.若m為坐標軸上一點,且MA=MB,求點M的坐標.
【答案】分析:(1)與x軸有兩個交點即是△>0,只要表示出△,通過配方得到(m-2)2+4即可說明此拋物線與x軸有兩個不同的交點;
(2)因為關(guān)于x的方程x2-mx+m-2=0的根為,
由m為整數(shù),當(m-2)2+4為完全平方數(shù)時,此拋物線與x軸才有可能交于整數(shù)點.列方程即可求得;
(3)首先確定函數(shù)的解析式,根據(jù)題意求得A,B的坐標,根據(jù)題意列方程即可.
解答:(1)證明:令y=0,則x2-mx+m-2=0.
因為△=m2-4m+8=(m-2)2+4>0,(1分)
所以此拋物線與x軸有兩個不同的交點.(2分)

(2)解:因為關(guān)于x的方程x2-mx+m-2=0的根為x==
由m為整數(shù),當(m-2)2+4為完全平方數(shù)時,此拋物線與x軸才有可能交于整數(shù)點.
設(shè)(m-2)2+4=n2(其中n為整數(shù)),(3分)
則[n+(m-2)][n-(m-2)]=4
因為n+(m-2)與n-(m-2)的奇偶性相同,
所以

解得m=2.
經(jīng)過檢驗,當m=2時,方程x2-mx+m-2=0有整數(shù)根.
所以m=2.(5分)

(3)解:當m=2時,
此二次函數(shù)解析式為y=x2-2x=(x-1)2-1,
則頂點坐標為(1,-1).
拋物線與x軸的交點為O(0,0)、B(2,0).
設(shè)拋物線的對稱軸與x軸交于點M1,則M1(1,0).
在直角三角形AM1O中,由勾股定理,得
由拋物線的對稱性可得,
又因為,即OA2+AB2=OB2
所以△ABO為等腰直角三角形.(6分)
則M1A=M1B.
所以M1(1,0)為所求的點.(7分)
若滿足條件的點M2在y軸上時,
設(shè)M2坐標為(0,y),
過A作AN⊥y軸于N,連接AM2、BM2,則M2A=M2B.
由勾股定理,
即M2A2=M2N2+AN2;M2B2=M2O2+OB2
即(y+1)2+12=y2+22
解得y=1.
所以M2(0,1)為所求的點.(8分)
綜上所述,滿足條件的M點的坐標為(1,0)或(0,1).
點評:此題考查了學生的綜合應用能力,解題的關(guān)鍵是仔細審題,理解題意;特別是要注意數(shù)形結(jié)合思想的應用.此題屬于難度大的問題,要注意審題.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

已知拋物線y=x2-8x+c的頂點在x軸上,則c等于(  )
A、4B、8C、-4D、16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知拋物線y=x2+(1-2a)x+a2(a≠0)與x軸交于兩點A(x1,0)、B(x2,0)(x1≠x2).
(1)求a的取值范圍,并證明A、B兩點都在原點O的左側(cè);
(2)若拋物線與y軸交于點C,且OA+OB=OC-2,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線y=-x2+bx+c與x軸負半軸交于點A,與y軸正半軸交于點B,且OA=OB.
精英家教網(wǎng)(1)求b+c的值;
(2)若點C在拋物線上,且四邊形OABC是平行四邊形,試求拋物線的解析式;
(3)在(2)的條件下,作∠OBC的角平分線,與拋物線交于點P,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•虹口區(qū)一模)如圖,在平面直角坐標系xOy中,已知拋物線y=x2+bx+c經(jīng)過A(0,3),B(1,0)兩點,頂點為M.
(1)求b、c的值;
(2)將△OAB繞點B順時針旋轉(zhuǎn)90°后,點A落到點C的位置,該拋物線沿y軸上下平移后經(jīng)過點C,求平移后所得拋物線的表達式;
(3)設(shè)(2)中平移后所得的拋物線與y軸的交點為A1,頂點為M1,若點P在平移后的拋物線上,且滿足△PMM1的面積是△PAA1面積的3倍,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•黔南州)已知拋物線y=x2-x-1與x軸的交點為(m,0),則代數(shù)式m2-m+2011的值為(  )

查看答案和解析>>

同步練習冊答案