【題目】閱讀下面材料:

在數(shù)學(xué)課上,老師請(qǐng)同學(xué)思考如下問(wèn)題:如圖1,我們把一個(gè)四邊形ABCD的四邊中點(diǎn)E,F(xiàn),G,H依次連接起來(lái)得到的四邊形EFGH是平行四邊形嗎?

小敏在思考問(wèn)題時(shí),有如下思路:連接AC.

結(jié)合小敏的思路作答

(1)若只改變圖1中四邊形ABCD的形狀(如圖2),則四邊形EFGH還是平行四邊形嗎?說(shuō)明理由,參考小敏思考問(wèn)題方法解決一下問(wèn)題

(2)如圖2,在(1)的條件下,若連接AC,BD.

①當(dāng)AC與BD滿足什么條件時(shí),四邊形EFGH是菱形,寫(xiě)出結(jié)論并證明;

②當(dāng)AC與BD滿足什么條件時(shí),四邊形EFGH是矩形,直接寫(xiě)出結(jié)論.

【答案】(1)是平行四邊形;(2)AC=BDAC⊥BD.

【解析】

試題分析:(1)如圖2,連接AC,根據(jù)三角形中位線的性質(zhì)平行四邊形判定定理即可得到結(jié)論;

(2)由(1)知,四邊形EFGH是平行四邊形,且FG=BD,HG=AC,于是得到當(dāng)AC=BD時(shí),F(xiàn)G=HG,即可得到結(jié)論;

若四邊形EFGH是矩形,則HGF=90°,GHGF,GHACGFBD,則ACBD

試題解析:(1)是平行四邊形證明如下

如圖2,連接AC,∵E是AB的中點(diǎn),F(xiàn)是BC的中點(diǎn),∴EF∥AC,EF=AC,同理HG∥AC,HG=AC,綜上可得:EF∥HG,EF=HG,故四邊形EFGH是平行四邊形;

(2)AC=BD.

理由如下:

由(1)知,四邊形EFGH是平行四邊形,且FG=BD,HG=AC,∴當(dāng)AC=BD時(shí),F(xiàn)G=HG,∴平行四邊形EFGH是菱形;

當(dāng)AC⊥BD時(shí),四邊形EFGH為矩形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如果=0,求[x2y2)+2yxy)-(xy)(x+3y]÷4y的值.

2)先化簡(jiǎn),再求值:(2a)(2a)a(a5b)3a5b3÷(a2b)2,其中ab=-.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2的相反數(shù)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列命題:

(1)平行四邊形的對(duì)角線互相平分;(2)矩形的對(duì)角線相等;(3)菱形的對(duì)角線互相垂直平分;(4)正方形的對(duì)角線相等且互相垂直平分.其中,真命題的個(gè)數(shù)是( )

A. 2B. 3C. 4D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC是⊙O的內(nèi)接三角形,AB為直徑,過(guò)點(diǎn)B的切線與AC的延長(zhǎng)線交于點(diǎn)D,E是BD中點(diǎn),連接CE.

(1)求證:CE是⊙O的切線;

(2)若AC=4,BC=2,求BD和CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 (x+3)(x-2)=x2+ax+b , 則a、b的值分別是(
A.a=-1,b=-6
B.a=1,b=-6
C.a=-1,b=6
D.a=1,b=6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形ABCD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到矩形FGCE,點(diǎn)M、N分別是BD、GE的中點(diǎn),若BC=14CE=2,則MN的長(zhǎng)(  )

A. 7 B. 8 C. 9 D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A(3,y1)、B(4,y2)都在拋物線y=x2+1上,試比較y1與y2的大。__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市教育行政部門為了了解七年級(jí)學(xué)生每學(xué)期參加綜合實(shí)踐活動(dòng)的情況,隨機(jī)抽樣調(diào)查了某校七學(xué)生一個(gè)學(xué)期參加綜合實(shí)踐活動(dòng)的天數(shù),并用得到的數(shù)據(jù)繪制了如圖兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)圖中提供的信息,回答下列問(wèn)題:

(1)求出扇形統(tǒng)計(jì)圖中的a的值,并求出該校七年級(jí)學(xué)生總數(shù);

(2)分別求出活動(dòng)時(shí)問(wèn)為5天、7天的學(xué)生人數(shù),并補(bǔ)全頻數(shù)分布直方圖;

(3)求出扇形統(tǒng)計(jì)圖中“活動(dòng)時(shí)間為4天”的扇形所對(duì)圓心角的度數(shù);

(4)如果該市共有七年級(jí)學(xué)生6000人,請(qǐng)你估計(jì)“活動(dòng)時(shí)間不小于4天”的大約有多少人?

查看答案和解析>>

同步練習(xí)冊(cè)答案