在線段、直線、角、等腰三角形、矩形中,既是軸對稱圖形又是中心對稱圖形的有

[  ]

A.2個
B.3個
C.4個
D.5個

答案:B
提示:

線段、直線、矩形既是軸對稱圖形又是中心對稱圖形.


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

21、填空:把下面的推理過程補充完整,并在括號內(nèi)注明理由.
如圖,點B、D在線段AE上,BC∥EF,AD=BE,BC=EF.
求證:
(1)∠C=∠F;
(2)AC∥DF.
證明:(1)∵BC∥EF(已知)
∴∠ABC=
∠E
∠DEF

∵AD=BE
∴AD+DB=DB+BE
AB
=DE
在△ABC與△DEF中
∠ABC=∠E
BC=EF(
已知

∴△ABC≌△DEF(
SAS

∴∠C=∠F(
全等三角形的對應角

(2)∵△ABC≌△DEF
∴∠A=∠FDE(
全等三角形的對應角

∴AC∥DF(
內(nèi)錯角相等,兩直線平行

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

小華用兩塊不全等的等腰直角三角形的三角板擺放圖形.
(1)如圖①所示△ABC,△DBE,兩直角邊交于點F,過點F作FG∥BC交AB于點G,連接BF、AD,則線段BF與線段AD的數(shù)量關系是
 
;直線BF與直線AD的位置關系是
 
,并求證:FG+DC=AC;
(2)如果小華將兩塊三角板△ABC,△DBE如圖②所示擺放,使D、B、C三點在一條直線上,AC、DE的延長線相交于點F,過點F作FG∥BC,交直線AE于點G,連接AD,F(xiàn)B,則FG、DC、AC之間滿足的數(shù)量關系式是
 
;
(3)在(2)的條件下,若AG=7
2
,DC=5,將一個45°角的頂點與點B重合,并繞點B旋轉,這個角的兩邊分別交線段FG于P、Q兩點(如圖③),線段DF分別與線段BQ、BP相交于M、N兩點,若PG=2,求線段MN的長.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知:△ABC為邊長是4
3
的等邊三角形,四邊形DEFG為邊長是6的正方形.現(xiàn)將等邊△ABC和正方形DEFG按如圖1的方式擺放,使點C與點E重合,點B、C(E)、F在同一條直線上,△ABC從圖1的位置出發(fā),以每秒1個單位長度的速度沿EF方向向右勻速運動,當點C與點F重合時暫停運動,設△ABC的運動時間為t秒(t≥0).

(1)在整個運動過程中,設等邊△ABC和正方形DEFG重疊部分的面積為S,請直接寫出S與t之間的函數(shù)關系式;
(2)如圖2,當點A與點D重合時,作∠ABE的角平分線BM交AE于M點,將△ABM繞點A逆時針旋轉,使邊AB與邊AC重合,得到△ACN.在線段AG上是否存在H點,使得△ANH為等腰三角形.如果存在,請求出線段EH的長度;若不存在,請說明理由.
(3)如圖3,若四邊形DEFG為邊長為4
3
的正方形,△ABC的移動速度為每秒
3
個單位長度,其余條件保持不變.△ABC開始移動的同時,Q點從F點開始,沿折線FG-GD以每秒2
3
個單位長度開始移動,△ABC停止運動時,Q點也停止運動.設在運動過程中,DE交折線BA-AC于P點,則是否存在t的值,使得PC⊥EQ,若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

填空:把下面的推理過程補充完整,并在括號內(nèi)注明理由.
如圖,點B、D在線段AE上,BC∥EF,AD=BE,BC=EF.
求證:(1)∠C=∠F;(2)AC∥DF.
證明:(1)∵BC∥EF(已知)
∴∠ABC=
∠E
∠E
兩直線平行同位角相等
兩直線平行同位角相等

∵AD=BE
∴AD+DB=DB+BE
AB
AB
=DE
在△ABC與△DEF中
AB=DE
∠ABC=∠E
BC=EF(
已知
已知

∴△ABC≌△DEF(
SAS
SAS

∴∠C=∠F(
全等三角形的對應角相等
全等三角形的對應角相等

(2)∵△ABC≌△DEF
∴∠A=∠FDE(
全等三角形的對應角相等
全等三角形的對應角相等

∴AC∥DF(
同位角相等兩直線平行
同位角相等兩直線平行

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

下面是六個推斷:
①因為平角的兩條邊在一條直線上,所以直線是一個平角.
②因為周角的兩條邊在一條射線上,所以射線是一個周角.
③因為扇形是圓的一部分,所以圓周的一部分是扇形.
④因為平行的線段沒有交點,所以不相交的兩條線段平行.
⑤因為正方形的邊長都相等,所以邊長相等的四邊形是正方形.
⑥因為等腰三角形有兩個內(nèi)角相等,所以有兩個內(nèi)角相等的三角形是等腰三角形.
其中正確的結論有
1
1
個,其序號是

查看答案和解析>>

同步練習冊答案