【題目】“作差法”是常見的比較代數(shù)式大小的一種方法,即要比較代數(shù)式M、N的大小,只要作出它們的差M﹣N,若M﹣N>0,則M>N;若M﹣N=0,則M=N;若M﹣N<0,則M<N.
(1)如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個邊長分別是a、b的小正方形及兩個長方形,試比較來兩個小正方形面積之和M與兩個長方形面積之和N的大。
(2)如圖2,圖3,△ABC中,AD⊥BC于D,AD=BC=2x﹣y,長方形EFGH中,長EH=2x﹣ y,寬EF=y,△ABC與長方形EFGH的面積分別為M、N,試比較M、N的大小,其中y>0,x> y且x≠y.
【答案】
(1)
解:根據(jù)題意得:M=a2+b2,N=ab+ab,
∴M﹣N=a2+b2﹣2ab=(a﹣b)2>0,
∴a≠b,
∴(a﹣b)2>0,
∴M﹣N>0,
∴M>N
(2)
解:在△ABC中,AD⊥BC于D,AD=BC=2x﹣y,
∴M= BCAD
= (2x﹣y)2
=2x2﹣2xy+ y2,
在長方形EFGH中,長EH=2x﹣ y,寬EF=y,
∴N=EHEF
=(2x﹣ y)y
=2xy﹣ y2,
∴M﹣N=(2x2﹣2xy+ y2)﹣(2xy﹣ y2)
=2x2﹣2xy+ y2﹣2xy+ y2
=2x2﹣4xy+2y2
=2(x2﹣2xy+y2)
=2(x﹣y)2,
∵x≠y,
∴(x﹣y)2>0,
∴2(x﹣y)2>0,
∴M﹣N>0,
即:M>N.
【解析】【解決問題】利用作差法比較M與N大小即可;【拓展延伸】利用作差法比較M與N大小即可;
【考點精析】本題主要考查了平行四邊形的性質(zhì)和平行四邊形的判定的相關(guān)知識點,需要掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分;兩組對邊分別平行的四邊形是平行四邊形:兩組對邊分別相等的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形;兩組對角分別相等的四邊形是平行四邊形;對角線互相平分的四邊形是平行四邊形才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示的是一種置于桌面上的簡易臺燈,將其結(jié)構(gòu)簡化成圖2,燈桿AB與CD交于點O(點O固定),燈罩連桿CE始終保持與AB平行,燈罩下方FG處于水平位置,測得OC=20cm,∠COB=70°,∠F=40°,EF=EG,點G到OB的距離為12cm.
(1)求∠CEG的度數(shù).
(2)求燈罩的寬度(FG的長;結(jié)果精確到0.1cm,可用科學(xué)計算器).
(參考數(shù)據(jù):sin40°≈0.643,cos40°≈0.766,sin70°≈0.940,cos70°≈0.342)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象經(jīng)過點(0,3),頂點坐標為(1,4).
(1)求這個二次函數(shù)的解析式;
(2)若將該拋物線繞原點旋轉(zhuǎn)180°,請直接寫出旋轉(zhuǎn)后的拋物線函數(shù)表達式。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了打造森林城市,樹立城市新地標,實現(xiàn)綠色、共享發(fā)展理念,在城南建起了“望月閣”及環(huán)閣公園.小亮、小芳等同學(xué)想用一些測量工具和所學(xué)的幾何知識測量“望月閣”的高度,來檢驗自己掌握知識和運用知識的能力.他們經(jīng)過觀察發(fā)現(xiàn),觀測點與“望月閣”底部間的距離不易測得,因此經(jīng)過研究需要兩次測量,于是他們首先用平面鏡進行測量.方法如下:如圖,小芳在小亮和“望月閣”之間的直線BM上平放一平面鏡,在鏡面上做了一個標記,這個標記在直線BM上的對應(yīng)位置為點C,鏡子不動,小亮看著鏡面上的標記,他來回走動,走到點D時,看到“望月閣”頂端點A在鏡面中的像與鏡面上的標記重合,這時,測得小亮眼睛與地面的高度ED=1.5米,CD=2米,然后,在陽光下,他們用測影長的方法進行了第二次測量,方法如下:如圖,小亮從D點沿DM方向走了16米,到達“望月閣”影子的末端F點處,此時,測得小亮身高FG的影長FH=2.5米,F(xiàn)G=1.65米.
如圖,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,測量時所使用的平面鏡的厚度忽略不計,請你根據(jù)題中提供的相關(guān)信息,求出“望月閣”的高AB的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=3,AD=4,動點Q從點A出發(fā),以每秒1個單位的速度,沿AB向點B移動;同時點P從點B出發(fā),仍以每秒1個單位的速度,沿BC向點C移動,連接QP,QD,PD.若兩個點同時運動的時間為x秒(0<x≤3),解答下列問題:
(1)設(shè)△QPD的面積為S,用含x的函數(shù)關(guān)系式表示S;當(dāng)x為何值時,S有最大值?并求出最小值;
(2)是否存在x的值,使得QP⊥DP?試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形ABCD中,AB=6cm,BC=4cm,點P從點A出發(fā)(不含點A),沿A→B→C→D運動,同時,點Q從點B出發(fā)(不含點B),沿B→C→D運動,當(dāng)點P到達點B時,點Q恰好到達點C,已知點P每秒比點Q每秒多運動1cm,當(dāng)其中一點到達點D(不含點D)時,另一點停止運動.
(1)求P、Q兩點的速度;
(2)當(dāng)其中一點到達點D時,另一點距離D點 cm(直接寫答案);
(3)設(shè)點P、Q的運動時間為t(x),請用含t的代數(shù)式表示△APQ的面積為S(cm3),并寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小彬一家人在2013年8月到北京旅游了4天,這4天的日期數(shù)(如8月1日的日期數(shù)為1)之和是38,則他們一家在北京旅游最后一天的日期數(shù)是( )
A.8號
B.9號
C.10號
D.11號
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com