【題目】如圖,在正方形ABCD中,點(diǎn)E、F、H分別是AB、BC、CD的中點(diǎn),CE、DF交于點(diǎn)G,連接AG、HG。下列結(jié)論:①CE⊥DF;②AG=DG;③∠CHG=∠DAG。其中,正確的結(jié)論有( )
A. 0個(gè)B. 1個(gè)C. 2個(gè)D. 3個(gè)
【答案】C
【解析】
連接AH,由四邊形ABCD是正方形與點(diǎn)E、F、H分別是AB、BC、CD的中點(diǎn),容易證得△BCE≌△CDF與△ADH≌△DCF,根據(jù)全等三角形的性質(zhì),容易證得CE⊥DF與AH⊥DF,故①正確;根據(jù)垂直平分線的性質(zhì),即可證得AG=AD,繼而AG=DC,而DG≠DC,所以AG≠DG,故②錯(cuò)誤;由直角三角形斜邊上的中線等于斜邊的一半,即可證得HG=DC,∠CHG=2∠GDC,根據(jù)等腰三角形的性質(zhì),即可得∠DAG=2∠DAH=2∠GDC.所以∠DAG=∠CHG,④正確,則問(wèn)題得解.
∵四邊形ABCD是正方形,
∴AB=BC=CD=AD,∠B=∠BCD=90°,
∵點(diǎn)E. F. H分別是AB、BC、CD的中點(diǎn),
∴BE=FC
∴△BCE≌△CDF,
∴∠ECB=∠CDF,
∵∠BCE+∠ECD=90°,
∴∠ECD+∠CDF=90°,
∴∠CGD=90°,
∴CE⊥DF,故①正確;
連接AH,
同理可得:AH⊥DF,
∵CE⊥DF,
∴△CGD為直角三角形,
∴HG=HD=CD,
∴DK=GK,
∴AH垂直平分DG,
∴AG=AD=DC,
在Rt△CGD中,DG≠DC,
∴AG≠DG,故②錯(cuò)誤;
∵AG=AD, AH垂直平分DG
∴∠DAG=2∠DAH,
根據(jù)①,同理可證△ADH≌△DCF
∴∠DAH=∠CDF,
∴∠DAG=2∠CDF,
∵GH=DH,
∴∠HDG=∠HGD,
∴∠GHC=∠HDG+∠HGD=2∠CDF,
∴∠GHC=∠DAG,故③正確,
所以①和③正確選擇C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校積極開(kāi)展“陽(yáng)光體育進(jìn)校園”活動(dòng),決定開(kāi)設(shè) A:乒乓球,B:籃球,C:跑步,D:跳繩四種運(yùn)動(dòng)項(xiàng)目,規(guī)定每個(gè)學(xué)生必須參加一項(xiàng)活動(dòng)。學(xué)校為了了解學(xué)生最喜歡哪一種運(yùn)動(dòng)項(xiàng)目,設(shè)計(jì)了以下四種調(diào)查方案.
方案一:調(diào)查該校七年級(jí)女生喜歡的運(yùn)動(dòng)項(xiàng)目
方案二:調(diào)查該校每個(gè)班級(jí)學(xué)號(hào)為 5 的倍數(shù)的學(xué)生喜歡的運(yùn)動(dòng)項(xiàng)目
方案三:調(diào)查該校書(shū)法小組的學(xué)生喜歡的運(yùn)動(dòng)項(xiàng)目
方案四:調(diào)查該校田徑隊(duì)的學(xué)生喜歡的運(yùn)動(dòng)項(xiàng)目
(1)上面的調(diào)查方案最合適的是 ;
學(xué)校體育組采用了(1)中的方案,將調(diào)查的結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖表.
最喜歡的運(yùn)動(dòng)項(xiàng)目人數(shù)調(diào)查統(tǒng)計(jì)表 最喜歡的運(yùn)動(dòng)項(xiàng)目人數(shù)分布統(tǒng)計(jì)圖
請(qǐng)你結(jié)合圖表中的信息解答下列問(wèn)題:
(2)這次抽樣調(diào)查的總?cè)藬?shù)是 ,m= ;
(3)在扇形統(tǒng)計(jì)圖中,A 項(xiàng)目對(duì)應(yīng)的圓心角的度數(shù)為 ;
(4)已知該校有 1200 名學(xué)生,請(qǐng)根據(jù)調(diào)查結(jié)果估計(jì)全校學(xué)生最喜歡乒乓球的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校120名學(xué)生某一周用于閱讀課外書(shū)籍的時(shí)間的頻率分布直方圖如圖所示.其中閱讀時(shí)間是8~10小時(shí)的頻數(shù)和頻率分別是( )
A. 15和0.125 B. 15和0.25 C. 30和0.125 D. 30和0.25
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)計(jì)算:
(2)計(jì)算:(2+)(2﹣)+÷+
(3)在ABCD中,過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,點(diǎn)F在CD上且DF=BE,連接AF,BF.
①求證:四邊形BFDE是矩形;
②若CF=6,BF=8,AF平分∠DAB,則DF= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在□ABCD中,點(diǎn)G為對(duì)角線AC的中點(diǎn),過(guò)點(diǎn)G的直線EF分別交邊AB、CD于點(diǎn)E、F,過(guò)點(diǎn)G的直線MN分別交邊AD、BC于點(diǎn)M、N,且∠AGE=∠CGN.
(1)求證:四邊形ENFM為平行四邊形;
(2)當(dāng)四邊形ENFM為矩形時(shí),求證:BE=BN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)y1=k1x+b的圖象與x軸、y軸分別交于A、B兩點(diǎn),與反比例函數(shù)y2=的圖象分別交于C、D兩點(diǎn),點(diǎn)D的坐標(biāo)為(2,-3),點(diǎn)B是線段AD的中點(diǎn).則不等式 k1x+b —>0的解集是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正比例函數(shù)與反比例函數(shù)的圖像交于A,B兩點(diǎn),過(guò)點(diǎn)A作AC⊥x軸,垂足為C,△ACO的面積為4。
(1)求反比例函數(shù)的表達(dá)式;
(2)點(diǎn)B的坐標(biāo)為 ;
(3)當(dāng)時(shí),直接寫(xiě)出x的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,2分別是某款籃球架的實(shí)物圖與示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角∠ACB=75°,支架AF的長(zhǎng)為2.50米,籃板頂端F點(diǎn)到籃框D的距離FD=1.35米,籃板底部支架HE與支架AF所成的角∠FHE=60°,求籃框D到地面的距離(精確到0.01米)(參考數(shù)據(jù):cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+bx的頂點(diǎn)為C(1,),P是拋物線上位于第一象限內(nèi)的一點(diǎn),直線OP交該拋物線對(duì)稱軸于點(diǎn)B,直線CP交x軸于點(diǎn)A.
(1)求該拋物線的表達(dá)式;
(2)如果點(diǎn)P的橫坐標(biāo)為m,試用m的代數(shù)式表示線段BC的長(zhǎng);
(3)如果△ABP的面積等于△ABC的面積,求點(diǎn)P坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com