【題目】某校積極開展“陽光體育進校園”活動,決定開設 A:乒乓球,B:籃球,C:跑步,D:跳繩四種運動項目,規(guī)定每個學生必須參加一項活動。學校為了了解學生最喜歡哪一種運動項目,設計了以下四種調查方案.
方案一:調查該校七年級女生喜歡的運動項目
方案二:調查該校每個班級學號為 5 的倍數的學生喜歡的運動項目
方案三:調查該校書法小組的學生喜歡的運動項目
方案四:調查該校田徑隊的學生喜歡的運動項目
(1)上面的調查方案最合適的是 ;
學校體育組采用了(1)中的方案,將調查的結果繪制成如下兩幅不完整的統(tǒng)計圖表.
最喜歡的運動項目人數調查統(tǒng)計表 最喜歡的運動項目人數分布統(tǒng)計圖
請你結合圖表中的信息解答下列問題:
(2)這次抽樣調查的總人數是 ,m= ;
(3)在扇形統(tǒng)計圖中,A 項目對應的圓心角的度數為 ;
(4)已知該校有 1200 名學生,請根據調查結果估計全校學生最喜歡乒乓球的人數.
【答案】(1)方式二;(2)80人,8;(3)162°;(4)540人
【解析】
(1)根據抽樣調查的數據需要具有代表性解答可得;
(2)根據樣本中最喜歡B(籃球)項目的人數20人,所占百分比25%得出抽樣調查的總人數,用總人數減去其他項目的人數即可求得m
(3)利用樣本中最喜歡A(乒乓球)項目的人數36人除以總人數,得出最喜歡A(乒乓球)項目所占的百分比,求出后再乘以360度即可求出度數;
(4)用全校學生數×選乒乓球的學生所占百分比即可.
解:(1)上面的調查方式合適的是方式二,
故答案為:方式二;
(2)20÷25%=80(人)
∴這次抽樣調查的總人數是80人
m=80-36-20-16=8
故答案為:80人,8
(3)360°×=162°,
∴A 項目對應的圓心角的度數為162°
故答案為:162°.
(4)1200×=540(人),
答:估計全校學生最喜歡乒乓球的人數為540人.
科目:初中數學 來源: 題型:
【題目】如圖,在直角坐標系中放入一個矩形紙片ABCO,將紙片翻折后,點B恰好落在軸上,記為,折痕為CE.直線CE的關系式是,與軸相交于點F,且AE=3.
(1)求OC長度;
(2)求點的坐標;
(3)求矩形ABCO的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某超市為了答謝顧客,凡在本超市購物的顧客,均可憑購物小票參與抽獎活動,獎品是三種瓶裝飲料,它們分別是:綠茶(500ml)、紅茶(500ml)和可樂(600ml),抽獎規(guī)則如下:①如圖,是一個材質均勻可自由轉動的轉盤,轉盤被等分成五個扇形區(qū)域,每個區(qū)域上分別寫有“可”、“綠”、“樂”、“茶”、“紅”字樣;②參與一次抽獎活動的顧客可進行兩次“有效隨機轉動”(當轉動轉盤,轉盤停止后,可獲得指針所指區(qū)域的字樣,我們稱這次轉動為一次“有效隨機轉動”);③假設顧客轉動轉盤,轉盤停止后,指針指向兩區(qū)域的邊界,顧客可以再轉動轉盤,直到轉動為一次“有效隨機轉動”;④當顧客完成一次抽獎活動后,記下兩次指針所指區(qū)域的兩個字,只要這兩個字和獎品名稱的兩個字相同(與字的順序無關),便可獲得相應獎品一瓶;不相同時,不能獲得任何獎品.
根據以上規(guī)則,回答下列問題:
(1)求一次“有效隨機轉動”可獲得“樂”字的概率;
(2)有一名顧客憑本超市的購物小票,參與了一次抽獎活動,請你用列表或樹狀圖等方法,求該顧客經過兩次“有效隨機轉動”后,獲得一瓶可樂的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】列方程解應用題
學校給七年級學生組織知識競賽,共設20道題,各題的分值相同,每題必答.下表記錄了5名學生的得分情況
參賽者 | 答對題數 | 答錯題數 | 得分 |
小明 | 10 | 10 | 40 |
小紅 | 19 | 1 | 94 |
小剛 | 20 | 0 | 100 |
小強 | 18 | 2 | 88 |
小麗 | 14 | 6 | 64 |
(1)參賽者小芳得76分,她答對了幾道題?
(2)參賽者小花說她得了83分,你認為可能嗎?為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在“母親節(jié)”前期,某花店購進康乃馨和玫瑰兩種鮮花,銷售過程中發(fā)現康乃馨比玫瑰銷售量大,店主決定將玫瑰每枝降價1元促銷,降價后30元可購買玫瑰的數量是原來購買玫瑰數量的1.5倍.
(1)求降價后每枝玫瑰的售價是多少元?
(2)根據銷售情況,店主用不多于900元的資金再次購進兩種鮮花共500枝,康乃馨進價為2元/枝,玫瑰進價為1.5元/枝,問至少購進玫瑰多少枝?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩名同學參加1 000米比賽,由于參賽選手較多,將選手隨機分A、B、C三組進行比賽.
(1)甲同學恰好在A組的概率是________;
(2)求甲、乙兩人至少有一人在B組的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】等腰△ABC中,∠BAC=120°,AB=AC=6,點D為邊BC上一動點.將△ABD沿著AD對折到△AB′D.若△BB′D為直角三角形,則BD=___________
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知線段,點是線段的中點,先按要求畫圖形,再解決問題.
(1)延長線段至點,使;延長線段至點,使;(尺規(guī)作圖,保留作圖痕跡)
(2)求線段的長度;
(3)若點是線段的中點,求線段的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,點E、F、H分別是AB、BC、CD的中點,CE、DF交于點G,連接AG、HG。下列結論:①CE⊥DF;②AG=DG;③∠CHG=∠DAG。其中,正確的結論有( )
A. 0個B. 1個C. 2個D. 3個
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com