【題目】某校初一所有學生將在大禮堂內參加2017年“元旦聯(lián)歡晚會”,若每排坐30人,則有8人無座位;若每排坐31人,則空26個座位,則初一年級共有多少名學生?設大禮堂內共有x排座位,可列方程為______________________
科目:初中數學 來源: 題型:
【題目】已知兩個共一個頂點的等腰直角△ABC和等腰直角△CEF,∠ABC=∠CEF=90°,連接AF,M是AF的中點,連接MB、ME.
(1)如圖1,當CB與CE在同一直線上時,求證:MB∥CF;
(2)如圖1,若CB=a,CE=2a,求BM,ME的長;
(3)如圖2,當∠BCE=45°時,求證:BM=ME.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】
①1是絕對值最小的數;
②0既不是正數,也不是負數;
③一個有理數不是整數就是分數;
④0的絕對值是0.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點P在BA的延長線上,PD切⊙O于點D,過點B作BE垂直于PD,交PD的延長線于點C,連接AD并延長,交BE于點E。
(1)求證:AB=BE;
(2)若PA=2 ,cosB=,求⊙O半徑的長。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】年月日是全國中小學安全教育日,為了讓學生了解安全知識,增強安全意識,我校舉行了一次“安全知識競賽”.為了了解這次競賽的成績情況,從中抽取了部分學生的成績?yōu)闃颖,繪制了下列統(tǒng)計圖(說明:A級:90分——100分;B級:75分——89分;C級:60分——74分;D級:60分以下).請結合圖中提供的信息,解答下列問題:
(1)扇形統(tǒng)計圖中C級所在的扇形的圓心角度數是 .(2)請把條形統(tǒng)計圖補充完整;
(3)若該校共有2000名學生,請你用此樣本估計安全知識競賽中A級和B級的學生共約有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=acm,AB=bcm(a>b>4),半徑為2cm的⊙O在矩形內且與AB、AD均相切.現(xiàn)有動點P從A點出發(fā),在矩形邊上沿著A→B→C→D的方向勻速移動,當點P到達D點時停止移動;⊙O在矩形內部沿AD向右勻速平移,移動到與CD相切時立即沿原路按原速返回,當⊙O回到出發(fā)時的位置(即再次與AB相切)時停止移動.已知點P與⊙O同時開始移動,同時停止移動(即同時到達各自的終止位置).
(1)如圖①,點P從A→B→C→D,全程共移動了 cm(用含a、b的代數式表示);
(2)如圖①,已知點P從A點出發(fā),移動2s到達B點,繼續(xù)移動3s,到達BC的中點.若點P與⊙O的移動速度相等,求在這5s時間內圓心O移動的距離;
(3)如圖②,已知a=20,b=10.是否存在如下情形:當⊙O到達⊙O1的位置時(此時圓心O1在矩形對角線BD上),DP與⊙O1恰好相切?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線與反比例函數的圖象相交于點A(a,3),且與x軸相交于點B.
(1)求該反比例函數的表達式;
(2)若P為y軸上的點,且△AOP的面積是△AOB的面積的,請求出點P的坐標.
(3)寫出直線向下平移2個單位的直線解析式,并求出這條直線與雙曲線的交點坐標。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我市為創(chuàng)建“國家級森林城市”,政府決定對江邊一處廢棄荒地進行綠化,要求栽植甲、乙兩種不同的樹苗共6000棵,且甲種樹苗不得多于乙種樹苗.某承包商以26萬元的報價中標承包了這項工程.根據調查及相關資料表明:移栽一棵樹苗的平均費用為8元,甲、乙兩種樹苗的購買價及成活率如表:
設購買甲種樹苗x棵,承包商獲得的利潤為y元.請根據以上信息解答下列問題:
(1) 設y與x之間的函數關系式,并寫出自變量x的取值范圍;
(2) 承包商要獲得不低于中標價16%的利潤,應如何選購樹苗?
(3) 政府與承包商的合同要求,栽植這批樹苗的成活率必須不低于93%,否則承包商出資補栽;若成貨率達到94%以上(含94%),則政府另給予工程款總額6%的獎勵,該承包商應如何選購樹苗才能獲得最大利潤?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com