如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB.
(1)求∠CAD的度數(shù);
(2)延長(zhǎng)AC至E,使CE=AC,求證:DA=DE.
(1)解:如圖,∵在Rt△ABC中,∠ACB=90°,∠B=30°,
∴∠B=30°,
∴∠CAB=60°.
又∵AD平分∠CAB,
∴∠CAD=∠CAB=30°,即∠CAD=30°;
(2)證明:∵∠ACD+∠ECD=180°,且∠ACD=90°,
∴∠ECD=90°,
∴∠ACD=∠ECD.
在△ACD與△ECD中,,
∴△ACD≌△ECD(SAS),
∴DA=DE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
下列運(yùn)算正確的是( 。
A. a3•a2=a5 B. a6÷a2=a3 C. (a3)2=a5 D. (3a)3=3a3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知三角形兩邊長(zhǎng)分別為3和8,則該三角形第三邊的長(zhǎng)可能是( 。
| A. | 5 | B. | 10 | C. | 11 | D. | 12 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在4×4的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,若將△AOC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到△BOD,則的長(zhǎng)為( 。
| A. | π | B. | 6π | C. | 3π | D. | 1.5π |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
在矩形ABCD中,=a,點(diǎn)G,H分別在邊AB,DC上,且HA=HG,點(diǎn)E為AB邊上的一個(gè)動(dòng)點(diǎn),連接HE,把△AHE沿直線(xiàn)HE翻折得到△FHE.
(1)如圖1,當(dāng)DH=DA時(shí),
①填空:∠HGA= 45 度;
②若EF∥HG,求∠AHE的度數(shù),并求此時(shí)的最小值;
(2)如圖3,∠AEH=60°,EG=2BG,連接FG,交邊FG,交邊DC于點(diǎn)P,且FG⊥AB,G為垂足,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
若一個(gè)正n邊形的每個(gè)內(nèi)角為156°,則這個(gè)正n邊形的邊數(shù)是( 。
| A. | 13 | B. | 14 | C. | 15 | D. | 16 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖1,在⊙O中,E是弧AB的中點(diǎn),C為⊙O上的一動(dòng)點(diǎn)(C與E在AB異側(cè)),連接EC交AB于點(diǎn)F,EB=(r是⊙O的半徑).
(1)D為AB延長(zhǎng)線(xiàn)上一點(diǎn),若DC=DF,證明:直線(xiàn)DC與⊙O相切;
(2)求EF•EC的值;
(3)如圖2,當(dāng)F是AB的四等分點(diǎn)時(shí),求EC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
在一個(gè)不透明的口袋中,有四個(gè)完全相同的小球,把它們分別標(biāo)號(hào)為1、2、3、4,隨機(jī)地摸取一個(gè)小球記下標(biāo)號(hào)后放回,再隨機(jī)地摸取一個(gè)小球記下標(biāo)號(hào),則兩次摸取的小球標(biāo)號(hào)都是1的概率為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com