精英家教網(wǎng)如圖,將長(zhǎng)方形紙片的一角折疊,使頂點(diǎn)A落在點(diǎn)A′處,BC為折痕,若BE是∠A′BD的角平分線,求∠CBE的度數(shù),并說(shuō)明理由.
分析:根據(jù)折疊前后角相等平角的定義求解即可.
解答:解:∵∠CBA=∠CBA′,∠A′BE=∠DBE,
∴∠CBE=∠CBA′+∠A′BE=
1
2
×180°=90°.
點(diǎn)評(píng):本題考查圖形的翻折變換,解題過(guò)程中應(yīng)注意折疊是一種對(duì)稱(chēng)變換,它屬于軸對(duì)稱(chēng),根據(jù)軸對(duì)稱(chēng)的性質(zhì),折疊前后圖形的形狀和大小不變,如本題中折疊前后角相等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

5、如圖,將長(zhǎng)方形紙片的一角折疊,使頂點(diǎn)A落在點(diǎn)A’處,BC為折痕,若BE是∠A′BD的平分線,則∠CBE的度數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,將長(zhǎng)方形紙片的一角折疊,使頂點(diǎn)A落在點(diǎn)A′處,BC為折痕,若BE是∠A′BD的平分線,則∠CBE的度數(shù)是
45
45
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,將長(zhǎng)方形紙片的兩角分別折疊,使頂點(diǎn)B落在B′處,頂點(diǎn)A落在A′處,EC、ED為折痕,并且點(diǎn)E、A′、B′在同一條直線上.若∠BED=32°,求∠CED和∠AEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、如圖,將長(zhǎng)方形紙片的兩角分別折疊,使頂點(diǎn)B落在B′處,頂點(diǎn)A落在A′處,EC為折痕,點(diǎn)E、A′、B′在同一條直線上.
(1)猜想折痕EC和ED的位置關(guān)系,并說(shuō)明理由;
(2)ED的反向延長(zhǎng)線交CA交于F,若∠BED=32°,求∠AEF和∠A′EC的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案