【題目】如圖,已知正方形的邊長為2,以點為圓心,1為半徑作圓,是圓上的任意一點,將點繞點按逆時針方向轉(zhuǎn)轉(zhuǎn),得到點,連接,則的最大值是__________.
【答案】
【解析】
先找出AF最大值時,點E的位置,再判斷出AF最大時,點C在AF上,根據(jù)正方形的性質(zhì)求出AC,從而得出AF的最大值.
過點A作∠EAB=45°交A于點E,此時旋轉(zhuǎn)后AF最大,
過點E作EG⊥AD交DA延長線于G,
在Rt△AEG中,AE=1,∠GAE=∠EAB=45°,
∴EG=AG=,
∵∠ADC=∠EDF,
∴∠ADE=∠CDF,
在△ADE和△CDF中, ,
∴△ADE≌△CDF,
∴CF=AE=1,
∠DCF=∠DAE=∠BAD+∠EAB=90°+45°=135°
∴點C在線段AF上,
∴AF=AC+CF,
∵AC是邊長為2的正方形的對角線,
∴AC=,
∴AF=+1,
即:AF的最大值是+1,
故答案為:+1
科目:初中數(shù)學 來源: 題型:
【題目】隨著生活水平的不斷提高,越來越多的人選擇到電影院觀看電影,體驗視覺盛宴,并且更多的人通過網(wǎng)上平臺購票,既快捷又能享受更多優(yōu)惠.某電影城2019年從網(wǎng)上購買張電影票的費用比現(xiàn)場購買張電影票的費用少元:從網(wǎng)上購買張電影票的費用和現(xiàn)場購買張電影票的費用共元.
(1)求該電影城2019年在網(wǎng)上購票和現(xiàn)場購票每張電影票的價格為多少元?
(2)2019年五一當天,該電影城按照2019年網(wǎng)上購票和現(xiàn)場購票的價格銷售電影票,當天售出的總票數(shù)為張.五一假期過后,觀影人數(shù)出現(xiàn)下降,于是電影城決定從5月5日開始調(diào)整票價:現(xiàn)場購票價格下調(diào),網(wǎng)上購票價格不變,結(jié)果發(fā)現(xiàn),現(xiàn)場購票每張電影票的價格每降低元,售出總票數(shù)就比五一當天增加張.經(jīng)統(tǒng)計,5月5日售出的總票數(shù)中有的電影票通過網(wǎng)上售出,其余通過現(xiàn)場售出,且當天票房總收入為元,試求出5月5日當天現(xiàn)場購票每張電影票的價格為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明大學畢業(yè)回家鄉(xiāng)創(chuàng)業(yè),第一期培植盆景與花卉各50盆,售后統(tǒng)計,盆景的平均每盆利潤是160元,花卉的平均每盆利潤是20元.調(diào)研發(fā)現(xiàn):
①盆景每增加1盆,盆景的平均每盆利潤減少2元,每減少1盆,盆景的平均每盆利潤增加2元;
②花卉的平均每盆利潤始終不變.
小明計劃第二期培植盆景與花卉共100盆,設(shè)培植的盆景比第一期增加盆,第二期盆景與花卉售完后的利潤分別為,(單位:元)
(1)用含的代數(shù)式分別表示,.
(2)當取何值時,第二期培植的盆錄與花卉售完后獲得的總利潤最大,最大總利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在“文化宜昌全民閱讀”活動中,某中學社團“精一讀書社”對全校學生的人數(shù)及紙質(zhì)圖書閱讀量(單位:本)進行了調(diào)查,2012年全校有1000名學生,2013年全校學生人數(shù)比2012年增加10%,2014年全校學生人數(shù)比2013年增加100人.
(1)求2014年全校學生人數(shù);
(2)2013年全校學生人均閱讀量比2012年多1本,閱讀總量比2012年增加1700本(注:閱讀總量=人均閱讀量×人數(shù))
①求2012年全校學生人均閱讀量;
②2012年讀書社人均閱讀量是全校學生人均閱讀量的2.5倍,如果2012年、2014年這兩年讀書社人均閱讀量都比前一年增長一個相同的百分數(shù)a,2014年全校學生人均閱讀量比2012年增加的百分數(shù)也是a,那么2014年讀書社全部80名成員的閱讀總量將達到全校學生閱讀總量的25%,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(問題原型)如圖,在中,對角線的垂直平分線交于點,交于點,交于點.求證:四邊形是菱形.
(小海的證法)證明:
是的垂直平分線,
,(第一步)
,(第二步)
.(第三步)
四邊形是平行四邊形.(第四步)
四邊形是菱形. (第五步)
(老師評析)小海利用對角線互相平分證明了四邊形是平行四邊形,再利用對角線互相垂直證明它是菱形,可惜有一步錯了.
(挑錯改錯)(1)小海的證明過程在第________步上開始出現(xiàn)了錯誤.
(2)請你根據(jù)小海的證題思路寫出此題的正確解答過程,
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,點,函數(shù)()的圖象經(jīng)過平行四邊形的頂點和邊的中點.
(1)求的值;
(2)若的面積等于6.求的值;
(3)若為函數(shù)()的圖象上一個動點,過點作直線軸于點,直線與軸上方的平行四邊形的一邊交于點,設(shè)點的橫坐標為,當時,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1和2,中,AB=3,BC=15,.點為延長線上一點,過點作切于點,設(shè).
(1)如圖1,為何值時,圓心落在上?若此時交于點,直接指出PE與BC的位置關(guān)系;
(2)當時,如圖2,與交于點,求的度數(shù),并通過計算比較弦與劣弧長度的大。
(3)當與線段只有一個公共點時,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y= ax2 + bx +c經(jīng)過點A(-1,0), B(3,0), C(0,-3).
(1)求該二次函數(shù)的解析式.
(2)利用圖象的特點填空.
①當x= ___ 時方程ax2 + bx+c=-3.
當x= ___時方程ax2 +bx+c=-4.
②不等式ax2 + bx + c> 0的解集為
不等式-4<ax2+bx+c<0的解集為.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,E為對角線BD上的一點,點F在AD的延長線上,且∠CEF=90°,EF交CD于H,分別過點F,點C作EC和EF的平行線,交于點G.
(1)證明:AE=CE;
(2)證明:四邊形ECGF是正方形;
(3)若正方形ABCD的邊長為,且BE=BC,求此時ΔEDF的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com