如圖①,在等腰梯形ABCD中,AD∥BC,AB=CD,上底AD=2,梯形的高也等于2.一動(dòng)點(diǎn)P從C出發(fā),沿CB方向在線段BC上作勻速運(yùn)動(dòng).
(1)若三角形ABP的面積S關(guān)于運(yùn)動(dòng)時(shí)間t的函數(shù)圖象如圖②所示,則可得BC長(zhǎng)為
6
6
;
(2)在(1)的條件下,試求∠B的度數(shù).
分析:(1)利用設(shè)P點(diǎn)的運(yùn)動(dòng)速度為v,則PC=vt,BP=BC-PC,即可得出BC-2v=3,進(jìn)而求出即可;
(2)利用全等三角形的判定得出△ABE≌△DCF,進(jìn)而得出四邊形AEFD是正方形,進(jìn)而得出答案.
解答:解:(1)設(shè)P點(diǎn)的運(yùn)動(dòng)速度為v,則PC=vt,BP=BC-PC,
∵當(dāng)t=2時(shí),s=3,
1
2
(BC-PC)•2=3,
BC-2v=3,①
∵當(dāng)t=4時(shí),s=0,
1
2
(BC-PC)•2=0,
CB-4v=0,②
①-②得:2v=3,
v=1.5,
∴BC=4×1.5=6;

(2)如圖①,過A作AE⊥CB,過D作DF⊥BC,
∴∠BEA=∠CFD=90°,
∵梯形ABCD是等腰梯形,
∴AB=CD,∠B=∠C,
∴△ABE≌△DCF,
∴BE=CF,
∵上底AD=2,梯形的高也等于2,
∴四邊形AEFD是正方形,
∴AD=EF=2,
∵CB=6,
∴BE=FC=2,
∴∠B=45°.
點(diǎn)評(píng):此題主要考查了等腰梯形的性質(zhì)以及全等三角形的判定,根據(jù)常用輔助線得出BE=FC進(jìn)而得出是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在等腰梯形ABCD中,AD∥BC,E是AB的中點(diǎn),過點(diǎn)E作EF∥BC交CD于點(diǎn)F.AB=4,BC=6,∠B=60度.
(1)求點(diǎn)E到BC的距離;
(2)點(diǎn)P為線段EF上的一個(gè)動(dòng)點(diǎn),過P作PM⊥EF交BC于點(diǎn)M,過M作MN∥AB交折線ADC于點(diǎn)N,連接PN,設(shè)EP=x.
①當(dāng)點(diǎn)N在線段AD上時(shí)(如圖2),△PMN的形狀是否發(fā)生改變?若不變,求出△PMN的周長(zhǎng);若改變,請(qǐng)說明理由;
②當(dāng)點(diǎn)N在線段DC上時(shí)(如圖3),是否存在點(diǎn)P,使△PMN為等腰三角形?若存在,請(qǐng)求出所有滿足要求的x的值;若不存在,請(qǐng)說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在等腰梯形ABCD中,BC∥AD,BC=8,AD=20,AB=DC=10,點(diǎn)P從A點(diǎn)出發(fā)沿AD邊向點(diǎn)D移動(dòng),點(diǎn)Q自A點(diǎn)出發(fā)沿A→B→C的路線移動(dòng),且PQ∥DC,若AP=x,梯形位于線段PQ右側(cè)部分的面積為S.
(1)分別求出點(diǎn)Q位于AB、BC上時(shí),S與x之間函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)當(dāng)線段PQ將梯形ABCD分成面積相等的兩部分時(shí),x的值是多少?
(3)在(2)的條件下,設(shè)線段PQ與梯形ABCD的中位線EF交于O點(diǎn),那么OE與OF的長(zhǎng)度有什么關(guān)系?借助備用圖2說明理由;并進(jìn)一步探究:對(duì)任何一個(gè)梯形,當(dāng)一直線l經(jīng)過梯形中位線的中點(diǎn)并滿足什么精英家教網(wǎng)條件時(shí),其一定平分梯形的面積?(只要求說出條件,不需證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

基本模型
如下圖,點(diǎn)B、P、C在同一直線上,若∠B=∠1=∠C=90°,則△ABP∽△PCD成立,
(1)模型拓展
如圖1,點(diǎn)B、P、C在同一直線上,若∠B=∠1=∠C,則△ABP∽△PCD成立嗎?為什么?
(2)模型應(yīng)用
①如圖2,在等腰梯形ABCD中,AD∥BC,AD=1,AB=2,BC=4,在BC上截取BP=AD,作∠APQ=∠B,PQ交CD于點(diǎn)Q,求CQ的長(zhǎng);
②如圖3,正方形ABCD的邊長(zhǎng)為1,點(diǎn)P是線段BC上的動(dòng)點(diǎn),作∠APQ=90°,PQ交CD于Q,當(dāng)P在何處時(shí),線段CQ最長(zhǎng)?最長(zhǎng)是多少?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2009•黔南州)楊老師在上四邊形時(shí)給學(xué)生出了這樣一個(gè)題.如圖,若在等腰梯形ABCD中,M、N分別是AD、BC的中點(diǎn),E、F分別是BM、CM的中點(diǎn)時(shí).提出以下問題:
(1)在不添加其它線段的前提下,圖中有哪幾對(duì)全等三角形?請(qǐng)直接寫出結(jié)論;
(2)猜想四邊形MENF是何種的四邊形?并加以說明;
(3)連接MN,當(dāng)MN與BC有怎樣的數(shù)量關(guān)系時(shí),四邊形MENF是正方形?(直接寫出關(guān)系式,不需要說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,一條直線與反比例函數(shù)y=
kx
的圖象交于A(1,5),B(5,n)兩點(diǎn),與x軸交于D點(diǎn).

(1)如圖甲,①求反比例函數(shù)的解析式;②求n的值及D點(diǎn)坐標(biāo);
(2)連接AO、BO,求△ABO的面積;
(3)如圖乙,在等腰梯形OBCE中,BC∥OE,OD=CE,OE在Y軸上,過點(diǎn)C作CF⊥Y軸于點(diǎn)F,CF和反比例函數(shù)的圖象交于點(diǎn)P,當(dāng)梯形OBCE的面積為10時(shí),請(qǐng)判斷PC和PF的大小關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案