如圖所示,Rt△ABC中,∠C=90°,AC=6,BC=12,點(diǎn)P從點(diǎn)A出發(fā)沿AC邊向點(diǎn)C以每秒1個單位的速度移動,點(diǎn)Q從點(diǎn)C出發(fā)沿CB邊向點(diǎn)B以每秒1個單位的速度移動,點(diǎn)P、Q同時出發(fā),設(shè)移動時間為t秒(t>0).
(1)求t為何值時,PQ∥AB;
(2)設(shè)△PCQ的面積為y,求y與t的函數(shù)關(guān)系式,并求出當(dāng)t為何值時,△PCQ的面積最大,最大面積是多少;
(3)設(shè)點(diǎn)C關(guān)于直線PQ的對稱點(diǎn)為D,求t為何值時,四邊形PCQD是正方形;
(4)當(dāng)?shù)玫秸叫蜳CQD后,點(diǎn)P不再沿AC邊移動,但正方形PCQD沿CB邊向B點(diǎn)以每秒1個單位的速度移動,當(dāng)點(diǎn)Q與點(diǎn)B重合時,停止移動,設(shè)運(yùn)動中的正方形為MNQD,正方形MNQD與Rt△ABC重合部分的面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量的取值范圍.

解:(1)由題意得出:CQ=t,PC=6-t,
∵PQ∥AB,
=
=,
∴t=4,

(2)∵y=PC×CQ=-t2+3t=-(t-3)2+
當(dāng)t=3時,△PCQ的面積最大,最大面積為:;

(3)∵當(dāng)PC=CQ時,t=3,△PCQ是等腰直角三角形,
∴當(dāng)t=3時,將△PCQ翻折得到的四邊形PCQD是正方形;

(4)①如圖1,由已知條件易知:當(dāng)t=6時,正方形MNQD的頂點(diǎn)D到達(dá)斜邊AB的中點(diǎn),
∴當(dāng)3≤t≤6時,正方形MNQD在Rt△ABC的內(nèi)部,此時s=9;
②如圖2,當(dāng)6<t≤9時,點(diǎn)D在Rt△ABC的外部,點(diǎn)M在Rt△ABC的內(nèi)部,設(shè)正方形MNQD與
AB的兩個交點(diǎn)分別是E,F(xiàn),則BQ=12-t,
由題意得出:DQ∥AC,
=,
=,
∴EQ=6-t,
DE=3-EQ=t-3,
而由題意得出:DF=t-6,
∴S=9-DE×DF=-t2+3t;
③如圖3,當(dāng)9<t≤12,
點(diǎn)D,M都在Rt△ABC的外部,設(shè)正方形MNQD與AB的兩個交點(diǎn)為:E,F(xiàn).
由題意得出:
BQ=12-t,
∴QE=(12-t),
∵BN=BQ+NQ=15-t,
∴FN=(15-t),
∴S=(QE+FN)×3=-t+
分析:(1)利用PQ∥AB,得出=,進(jìn)而求出t的值即可;
(2)利用y=PC×CQ得出關(guān)于t的二次函數(shù)的解析式,進(jìn)而求出最值即可;
(3)利用當(dāng)PC=CQ時,t=3,△PCQ是等腰直角三角形,進(jìn)而得出當(dāng)t=3時,將△PCQ翻折得到的四邊形PCQD是正方形;
(4)根據(jù)當(dāng)t=6時,當(dāng)6<t≤9時,點(diǎn)D在Rt△ABC的外部,點(diǎn)M在Rt△ABC的內(nèi)部,以及當(dāng)9<t≤12,點(diǎn)D,M都在Rt△ABC的外部分別求出即可.
點(diǎn)評:此題主要考查了翻折變換的性質(zhì)以及正方形的性質(zhì),利用分類討論思想進(jìn)行分析即可得出答案是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

6、如圖所示的Rt△ABC繞直角邊AB旋轉(zhuǎn)一周,所得幾何體的主視圖為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖所示,Rt△ABC中,∠C=90°,AB的垂直平分線DE交BC于D,交AB于點(diǎn)E.當(dāng)∠B=30°時,圖中一定相等的線段錯誤的有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,Rt△ABC中,已知∠BAC=90°,AB=AC=2,點(diǎn)D在BC上運(yùn)動(不能到達(dá)點(diǎn)B,C),過點(diǎn)D作∠ADE=45°,DE交AC于點(diǎn)E.
(1)求證:△ABD∽△DCE;
(2)當(dāng)△ADE是等腰三角形時,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,Rt△ABC中,∠C=90°,AB=4,△ABC的面積為
5
2
,則tanA+tanB等于( 。精英家教網(wǎng)
A、
4
5
B、
5
2
C、4
D、
16
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖所示,Rt△ABC中,∠C=90°,∠ABC=60°,DC=11,D點(diǎn)到AB的距離為2,求BD的長.

查看答案和解析>>

同步練習(xí)冊答案