【題目】如圖,已知AB是⊙O的直徑,點H在⊙O上,E是 的中點,過點E作EC⊥AH,交AH的延長線于點C.連接AE,過點E作EF⊥AB于點F.
(1)求證:CE是⊙O的切線;
(2)若FB=2,tan∠CAE= ,求OF的長.
【答案】
(1)
證明:連接OE,
∵點E為弧HB的中點,
∴∠1=∠2,
∵OE=OA,
∴∠3=∠2,
∴∠3=∠1,
∴OE∥AC,
∵AC⊥CE,
∴OE⊥CE,
∵點E在⊙O上,
∴CE是⊙O的切線
(2)
解:連接EB,
∵AB是⊙O的直徑,
∴∠AEB=90°,
∵EF⊥AB于點F,
∴∠AFE=∠EFB=90°,
∴∠2+∠AEF=∠4+∠AEF=90°,
∴∠2=∠4=∠1.
∵tan∠CAE= ,
∴tan∠4= ,
在Rt△EFB中,∠EFB=90°,F(xiàn)B=2,tan∠4= ,
∴EF= ,
在Rt△AEF中,tan∠2= ,EF=2 ,
∴AF=4,
∴AB=AF+EF=6,
∴OB=3,
∴OF=OB﹣BF=1.
【解析】(1)連接OE,由于點E為弧HB的中點,根據(jù)圓周角定理可知∠1=∠2,而OA=OE,那么∠3=∠2,于是∠1=∠3,根據(jù)平行線的判定可知OE∥AC,而AC⊥CE,根據(jù)平行線的性質(zhì)易知∠OEC=90°,即OE⊥CE,根據(jù)切線的判定可知CE是⊙O的切線;(2)由于AB是直徑,那么∠AEB=90°,而EF⊥AB,易知∠1=∠2=∠4,那么tan∠1=tan∠2=tan∠4= ,在Rt△EFB中,利用正切可求EF,同理在Rt△AEF中,也可求AF,那么直徑AB=6,從而可知半徑OB=3,進(jìn)而可求OF.
【考點精析】認(rèn)真審題,首先需要了解平行線的判定與性質(zhì)(由角的相等或互補(數(shù)量關(guān)系)的條件,得到兩條直線平行(位置關(guān)系)這是平行線的判定;由平行線(位置關(guān)系)得到有關(guān)角相等或互補(數(shù)量關(guān)系)的結(jié)論是平行線的性質(zhì)),還要掌握勾股定理的概念(直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2)的相關(guān)知識才是答題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形ABCD中,AB∥DC , ∠B=90°,E為BC上一點,且AE⊥ED . 若BC=12,DC=7,BE:EC=1:2,
(1)求AB的長.
(2)求△AED的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,對角線AC,BD相交于點O,AB=5,AC=6,BD=8.
(1)求證:四邊形ABCD是菱形;
(2)過點A作AH⊥BC于點H,求AH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰直角三角形ABC中,AB=AC,∠BAC=90°.點P為直線AB上一個動點(點P不與點A,B重合),連接PC,點D在直線BC上,且PD=PC.過點P作PE^PC,點D,E在直線AC的同側(cè),且PE=PC,連接BE.
(1)情況一:當(dāng)點P在線段AB上時,圖形如圖1 所示;
情況二:如圖2,當(dāng)點P在BA的延長線上,且AP<AB時,請依題意補全圖2;.
(2)請從問題(1)的兩種情況中,任選一種情況,完成下列問題:
①求證:∠ACP=∠DPB;
②用等式表示線段BC,BP,BE之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)在一個變化過程中有兩個變量x與y,如果對于x的每一個值,y都有唯一確定的值和它對應(yīng),那么就說y是x的函數(shù),記作y=f(x).在函數(shù)y=f(x)中,當(dāng)自變量x=a時,相應(yīng)的函數(shù)值y可以表示為f(a).
例如:函數(shù)f(x)=x2﹣2x﹣3,當(dāng)x=4時,f(4)=42﹣2×4﹣3=5在平面直角坐標(biāo)系xOy中,對于函數(shù)的零點給出如下定義:
如果函數(shù)y=f(x)在a≤x≤b的范圍內(nèi)對應(yīng)的圖象是一條連續(xù)不斷的曲線,并且f(a).f(b)<0,那么函數(shù)y=f(x)在a≤x≤b的范圍內(nèi)有零點,即存在c(a≤c≤b),使f(c)=0,則c叫做這個函數(shù)的零點,c也是方程f(x)=0在a≤x≤b范圍內(nèi)的根.
例如:二次函數(shù)f(x)=x2﹣2x﹣3的圖象如圖1所示.
觀察可知:f(﹣2)>0,f(1)<0,則f(﹣2).f(1)<0.所以函數(shù)f(x)=x2﹣2x﹣3在﹣2≤x≤1范圍內(nèi)有零點.由于f(﹣1)=0,所以,﹣1是f(x)=x2﹣2x﹣3的零點,﹣1也是方程x2﹣2x﹣3=0的根.
(1)觀察函數(shù)y1=f(x)的圖象2,回答下列問題:
①f(a)f(b) 0(“<”“>”或“=”)
②在a≤x≤b范圍內(nèi)y1=f(x)的零點的個數(shù)是 .
(2)已知函數(shù)y2=f(x)=﹣ 的零點為x1 , x2 , 且x1<1<x2 .
①求零點為x1 , x2(用a表示);
②在平面直角坐標(biāo)xOy中,在x軸上A,B兩點表示的數(shù)是零點x1 , x2 , 點 P為線段AB上的一個動點(P點與A、B兩點不重合),在x軸上方作等邊△APM和等邊△BPN,記線段MN的中點為Q,若a是整數(shù),求拋物線y2的表達(dá)式并直接寫出線段PQ長的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了更好地貫徹落實國家關(guān)于“強化體育課和課外鍛煉,促進(jìn)青少年身心健康、體魄強健”的精神,某校大力開展體育活動.該校九年級三班同學(xué)組建了足球、籃球、乒乓球、跳繩四個體育活動小組.經(jīng)調(diào)查,全班同學(xué)全員參與,各活動小組人數(shù)分布情況的扇形圖和條形圖如下:
(1)求該班學(xué)生人數(shù);
(2)請你補全條形圖;
(3)求跳繩人數(shù)所占扇形圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰三角形ABC中,AB=AC,點D、E分別在邊AB、AC上,且AD=AE,連接BE、CD,交于點F.
(1)判斷∠ABE與∠ACD的數(shù)量關(guān)系,并說明理由;
(2)求證:過點A、F的直線垂直平分線段BC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com