【題目】如圖,已知:二次函數(shù)yx2+bx的圖象交x軸正半軸于點(diǎn)A,頂點(diǎn)為P,一次函數(shù)yx3的圖象交x軸于點(diǎn)B,交y軸于點(diǎn)C,∠OCA的正切值為

1)求二次函數(shù)的解析式與頂點(diǎn)P坐標(biāo);

2)將二次函數(shù)圖象向下平移m個(gè)單位,設(shè)平移后拋物線頂點(diǎn)為P,若SABPSBCP,求m的值.

【答案】(1)解析式為yx22x,頂點(diǎn)P的坐標(biāo)為(1,﹣1);(2)mm

【解析】

(1)先由直線解析式求出點(diǎn)B,C坐標(biāo),利用∠OCA正切值求得點(diǎn)A坐標(biāo),再利用待定系數(shù)法求解可得;

(2)由平移知點(diǎn)P`坐標(biāo)為(1,-1-m),設(shè)拋物線對(duì)稱軸與x軸交于點(diǎn)H,BC交于點(diǎn)M

M(1,- ),先得出SABPABPH×4m+1)=2m+1,SBCPSPMC+SPMBPMOB3|m|,根據(jù)SABPSBCP列出方程求解可得

解:(1)∵yx3

x0時(shí),y=﹣3

當(dāng)y0時(shí), x30,解得x6,

∴點(diǎn)B60),C0,﹣3),

tanOCA,

OA2,即A2,0),

A2,0)代入yx2+bx,得4+2b0,

解得b=﹣2

yx22x=(x121,

則拋物線解析式為yx22x,頂點(diǎn)P的坐標(biāo)為(1,﹣1);

2)如圖,

由平移知點(diǎn)P坐標(biāo)為(1,﹣1m),

設(shè)拋物線對(duì)稱軸與x軸交于點(diǎn)H,與BC交于點(diǎn)M,則M1,﹣),

SABPABPH×4m+1)=2m+1),

SBCPSPMC+SPMBPMOB|1m+|×63|m|

2m+1)=3|m|,

解得m m

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一跨河橋,橋拱是圓弧形,跨度(AB)為16米,拱高(CD)為4米,求:

1)橋拱半徑.

2)若大雨過后,橋下河面寬度(EF)為12米,求水面漲高了多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,過原點(diǎn)O及點(diǎn)A8,0),C0,6)作矩形OABC,連接OB,點(diǎn)DOB的中點(diǎn),點(diǎn)E是線段AB上的動(dòng)點(diǎn),連接DE,作DF⊥DE,交OA于點(diǎn)F,連接EF.已知點(diǎn)EA點(diǎn)出發(fā),以每秒1個(gè)單位長度的速度在線段AB上移動(dòng),設(shè)移動(dòng)時(shí)間為t秒.

1)如圖1,當(dāng)t=3時(shí),求DF的長.

2)如圖2,當(dāng)點(diǎn)E在線段AB上移動(dòng)的過程中,的大小是否發(fā)生變化?如果變化,請(qǐng)說明理由;如果不變,請(qǐng)求出的值.

3)連接AD,當(dāng)AD△DEF分成的兩部分的面積之比為12時(shí),求相應(yīng)的t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,的頂點(diǎn)、在坐標(biāo)軸上,點(diǎn)的坐標(biāo)是(2,2).將ABC沿軸向左平移得到A1B1C1,點(diǎn)落在函數(shù)y=-.如果此時(shí)四邊形的面積等于,那么點(diǎn)的坐標(biāo)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知線段,按照以下要求作圖和證明:用尺規(guī)作等邊;在的延長線上取點(diǎn),在的延長線上取點(diǎn),使得,連接,.求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知正方形的頂點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,頂點(diǎn)在第一象限內(nèi),拋物線常數(shù))的頂點(diǎn)為正方形對(duì)角線上一動(dòng)點(diǎn).

1)當(dāng)拋物線經(jīng)過兩點(diǎn)時(shí),求拋物線的解析式;

2)若拋物線與直線相交于另一點(diǎn)非拋物線頂點(diǎn),且在第一象限內(nèi)),求證:長是定值;

3)根據(jù)(2)的結(jié)論,取的中點(diǎn),求的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生對(duì)學(xué)校飯菜的滿意程度,某中學(xué)數(shù)學(xué)興趣小組對(duì)在校就餐的學(xué)生進(jìn)行了抽樣調(diào)查,得到如下不完整的統(tǒng)計(jì)圖.

請(qǐng)結(jié)合圖中信息,解決下列問題:

1)此次調(diào)查中接受調(diào)查的人數(shù)為人,其中非常滿意的人數(shù)為_ _

2)興趣小組準(zhǔn)備從不滿意4位學(xué)生中隨機(jī)抽取2位進(jìn)行回訪,已知這4位學(xué)生中有2位男生2位女生,請(qǐng)用列舉法求出隨機(jī)抽取的學(xué)生是一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖RtABC中,∠C=90°,AC=6,BC=8,DAB的中點(diǎn),P是直線BC上一點(diǎn),把△BDP沿PD所在直線翻折后,點(diǎn)B落在點(diǎn)Q處,如果QDBC,那么點(diǎn)P和點(diǎn)B間的距離等于____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形ABCD中,ABCD,∠ABC90°,AB6,BC8tanD2,點(diǎn)E是射線CD上一動(dòng)點(diǎn)(不與點(diǎn)C重合),將△BCE沿著BE進(jìn)行翻折,點(diǎn)C的對(duì)應(yīng)點(diǎn)記為點(diǎn)F

(1)如圖1,當(dāng)點(diǎn)F落在梯形ABCD的中位線MN上時(shí),求CE的長.

(2)如圖2,當(dāng)點(diǎn)E在線段CD上時(shí),設(shè)CEx,,求yx之間的函數(shù)關(guān)系式,并寫出定義域.

(3)如圖3,聯(lián)結(jié)AC,線段BF與射線CA交于點(diǎn)G,當(dāng)△CBG是等腰三角形時(shí),求CE的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案