【題目】如圖,在平面直角坐標系中,點O是坐標原點,四邊形ABCO是菱形,點A的坐標為(﹣3,4),點Cx軸的正半軸上,直線ACy軸于點M,AB邊交于y軸于點H

1)連接BM,動點P從點A出發(fā),沿折線ABC方向以1個單位/秒的速度向終點C勻速運動,設(shè)PMB的面積為SS0),點P的運動時間為t秒,求St之間的函數(shù)關(guān)系式(要求寫出自變量t的取值范圍);

2)在(1)的情況下,當點P在線段AB上運動時,是否存在以BM為腰的等腰三角形BMP?如存在,求出t的值;如不存在,請說明理由.

【答案】1)詳見解析;(2)當t=1時,PMB為以BM為腰的等腰三角形.

【解析】

1)設(shè)點MBC的距離為h,由ABC的面積易得h,利用分類討論的思想,三角形的面積公式①當P在直線AB上運動;②當P運動到直線BC上時分別得PBM的面積;

2)分類討論:①當MB=MP時,PH=BH,解得t;②當BM=BP時,利用勾股定理可得BM的長,易得t

解:

1)設(shè)點MBC的距離為h

SABC=SABM+SBCM,

,

h=

①當P在直線AB上運動時PBM的面積為SP的運動時間為t秒關(guān)系為:

S=5t×,即S= 0≤t5);

②當P運動到直線BC上時PMB的面積為SP的運動時間為t秒關(guān)系為:

S= [5﹣(10t,即S=t-5t≤10);

2)存在①當MB=MP時,

∵點A的坐標為(﹣3,4),AB=5,MB=MP,MHAB,

PH=BH,即3t=2,

t=1;

②當BM=BP時,即5t= ,

綜上所述,當t=1時,△PMB為以BM為腰的等腰三角形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某商店在甲批發(fā)市場以每包m元的價格進了40包茶葉,又在乙批發(fā)市場以每包n的價格進了同樣的60包茶葉,如果商家以每包元的價格賣出這些茶葉,賣完后,這家商店( )

A. 盈利了B. 虧損了C. 不盈不虧D. 盈虧不能確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知中,,點以每秒1個單位的速度從運動,同時點以每秒2個單位的速度從方向運動,到達點后,點也停止運動,設(shè)點運動的時間為.

(1)點停止運動時,的長;

(2) 兩點在運動過程中,點點關(guān)于直線的對稱點,是否存在時間,使四邊形為菱形?若存在,求出此時的值;若不存在,請說明理由.

(3) 兩點在運動過程中,求使相似的時間的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)軸上,點A向右移動1個單位得到點B,點B向右移動(n+1)(n為正整數(shù))個單位得到點C,點A,B,C分別表示有理數(shù)a,b,c,

(1)當n=1時,

A,B,C三點在數(shù)軸上的位置如圖所示,a,b,c三個數(shù)的乘積為正數(shù),數(shù)軸上原點的位置可   

A.在點A左側(cè)或在A,B兩點之間 B.在點C右側(cè)或在A,B兩點之間

C.在點A左側(cè)或在B,C兩點之間 D.在點C右側(cè)或在B,C兩點之間

若這三個數(shù)的和與其中的一個數(shù)相等,求a的值;

(2)將點C向右移動(n+2)個單位得到點D,點D表示有理數(shù)d,a、b、c、d四個數(shù)的積為正數(shù),這四個數(shù)的和與其中的兩個數(shù)的和相等,且a為整數(shù),請在數(shù)軸上標出點D并用含n的代數(shù)式表示a.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知菱形A1B1C1D1的邊長為2,且∠A1B1C1=60°,對角線A1C1,B1D1相較于點O,以點O為坐標原點,分別以O(shè)A1,OB1所在直線為x軸、y軸,建立如圖所示的直角坐標系,以B1D1為對角線作菱形B1C2D1A2 ,使得∠B1A2D1=60°;再以A2C2為對角線作菱形A2B2C2D2,使得∠A2B2C2=60°;再以B2D2為對角線作菱形B2C3D2A3,使得∠B2A3D2=60°…,按此規(guī)律繼續(xù)作下去,在x軸的正半軸上得到點A1,A2,A3,…,An,則點A2018的坐標為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1+2+22+23+…+22018的值,可令S1+2+22+23+…+22018,則2S2+22+23+24+…22019,因此2SS220191,即S220191.依照以上的方法,計算出1+5+52+53+…52017的值為( 。

A. 52018﹣1 B. 52019﹣1 C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點A(8,1),B(0,﹣3),反比例函數(shù)y=(x>0)的圖象經(jīng)過點A,動直線x=t(0<t<8)與反比例函數(shù)的圖象交于點M,與直線AB交于點N.

(1)求k的值;

(2)當t=4時,求△BMN面積;

(3)若MA⊥AB,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形是邊長為4的正方形點POA邊上任意一點(與點不重合),連接CP,過點P,且,過點M,交于點聯(lián)結(jié),設(shè).

1)當時,點的坐標為( ,

2)設(shè),求出的函數(shù)關(guān)系式,寫出函數(shù)的定義域。

3)在軸正半軸上存在點,使得是等腰三角形,請直接寫出不少于4個符合條件的點的坐標(用的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB、CD相交于點O,OE平分∠BOD.

(1)若∠AOC=68°,∠DOF=90°,求∠EOF的度數(shù).

(2)若OF平分∠COE,∠BOF=30°,求∠AOC的度數(shù).

查看答案和解析>>

同步練習冊答案