【題目】如圖,正方形的邊長(zhǎng)為1,點(diǎn)與原點(diǎn)重合,軸正半軸上,軸負(fù)半軸上,將正方形繞著點(diǎn)逆時(shí)針旋轉(zhuǎn),相交于點(diǎn),則坐標(biāo)為(

A.B.C.D.

【答案】A

【解析】

連接AE,由旋轉(zhuǎn)性質(zhì)知AD=AB′=1、∠BAB′=30°、∠B′AD=60°,證RtADERtAB′E得∠DAE=B′AD=30°,由DE=ADtanDAE可得答案.

如圖:連接AE

∵將邊長(zhǎng)為1的正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°得到正方形,

AD=AB′=1,∠BAB′=30°,

∴∠B′AD=60°,

RtADERtA B′E中,

RtADERtAB′EHL),

∴∠DAE=B′AE=B′AD=30°,

DE=ADtanDAE=1×=

∴點(diǎn)E的坐標(biāo)為(-1,

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖中是拋物線形拱橋,當(dāng)水面寬AB=8米時(shí),拱頂?shù)剿娴木嚯xCD=4米.如果水面上升1米,那么水面寬度為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1) 發(fā)現(xiàn):

如圖1,點(diǎn)是線段外一動(dòng)點(diǎn),且.當(dāng)點(diǎn)位于 時(shí),線段的長(zhǎng)取得最大值;最大值為 (用含,的式子表示)

(2)應(yīng)用:

如圖2,點(diǎn)為線段外一動(dòng)點(diǎn),,,分別以,為邊在外部作等邊和等邊,連接,

①求證:

②直接寫出線段長(zhǎng)的最大值.

(3)拓展:

如圖3,在平面直角坐標(biāo)系中,點(diǎn),點(diǎn),點(diǎn)為線段外一動(dòng)點(diǎn),,,請(qǐng)直接寫出線段長(zhǎng)的最大值及此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù) 分別交y軸、x 軸于A、B兩點(diǎn),拋物線 過(guò)A、B兩點(diǎn).

(1)求這個(gè)拋物線的解析式;
(2)作垂直x軸的直線x=t,在第一象限交直線AB于點(diǎn)M,交這個(gè)拋物線于點(diǎn)N.求當(dāng)t 取何值時(shí),MN有最大值?最大值是多少?
(3)在(2)的情況下,以A、M、N、D為頂點(diǎn)作平行四邊形,求第四個(gè)頂點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的弦,OP⊥OA交AB于點(diǎn)P,過(guò)點(diǎn)B的直線交OP的延長(zhǎng)線于點(diǎn)C,且CP=CB.

(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑為3,OP=1,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某蔬菜有限公司一年四季都有大量新鮮蔬菜銷往全國(guó)各地,近年來(lái)它的蔬菜產(chǎn)值不斷增加,2014年蔬菜的產(chǎn)值是640萬(wàn)元,2016年產(chǎn)值達(dá)到1000萬(wàn)元.
(1)求2015年、2016年蔬菜產(chǎn)值的平均增長(zhǎng)率是多少?
(2)若2017年蔬菜產(chǎn)值繼續(xù)穩(wěn)定增長(zhǎng)(即年增長(zhǎng)率與前兩年的年增長(zhǎng)率相同),那么請(qǐng)你估計(jì)2017年該公司的蔬菜產(chǎn)值達(dá)到多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線DE經(jīng)過(guò)點(diǎn)A

1)寫出∠B的內(nèi)錯(cuò)角是   ,同旁內(nèi)角是   

2)若∠EAC=∠CAC平分∠BAE,∠B44°,求∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線 分別交x軸、y軸于A、B兩點(diǎn),已知點(diǎn)C坐標(biāo)為(6,0),若直線AB上存在點(diǎn)P,使∠OPC=90°,則m的取值范圍是。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年宜賓市創(chuàng)建全國(guó)文明城市的過(guò)程中,某小區(qū)決定購(gòu)買文明用語(yǔ)提示牌和文明信息公示欄.若購(gòu)買2個(gè)提示牌和3個(gè)公示欄需要510元;購(gòu)買3個(gè)提示牌和5個(gè)公示欄需要840元.

(1)求提示牌和公示欄的單價(jià)各是多少元?

(2)若該小區(qū)購(gòu)買提示牌和公示欄共50個(gè),要求購(gòu)買公示欄至少12個(gè),且總費(fèi)用不超過(guò)3200元.請(qǐng)你列舉出所有購(gòu)買方案,并指出哪種方案費(fèi)用最少,最少費(fèi)用為多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案