【題目】如圖,在正方形網(wǎng)格中,、均為格點(格點是指每個小正方形的頂點),將向下平移6個單位得到.利用網(wǎng)格點和直尺畫圖:

1)在網(wǎng)格中畫出;

2)畫出邊上的中線,邊上的高線;

3)若的邊、分別與的邊垂直,則的度數(shù)是 .

【答案】(1)見解析;(2)180°.

【解析】

1)根據(jù)網(wǎng)格結構找出點A、B、C向下平移6個單位的對應點A′B′、C′的位置,然后順次連接即可;
2)根據(jù)四邊形的內(nèi)角和及垂直的定義解答即可;

(1)如圖所示:直接把點平移,然后連接.

(2)如圖所示:找AC的中點D,連接BD即可,延長AB過點C做垂線.

(3) 分兩種情況解答:

①如圖所示:

∵∠CAB=45°, AFP=AEP=90°, ∴∠MPN=360°-AFP-AEP-CAB=360°-90°-90°-45°=135°;

②如圖所示:

∵∠CAB=45°, AFP=AEP=90°,,AOE=POF,,

360°-AFP-POF=360°-AEP -AOE, ∴∠MPN=CAB=45°,

綜上所述:∠MPN的度數(shù)為:45°135°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】矩形ABCDCEFG,如圖放置,點B,C,E共線,點C,D,G共線,連接AF,取AF的中點H,連接GH.若BC=EF=2,CD=CE=1,則GH=(  )

A. 1 B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為18元,試銷過程中發(fā)現(xiàn),每月銷售量y(萬件)與銷售單價x(元)之間的關系可以近似地看作一次函數(shù)y=-2x+100.(利潤=售價-制造成本)

(1)寫出每月的利潤z(萬元)與銷售單價x(元)之間的函數(shù)關系式;

(2)當銷售單價為多少元時,廠商每月能獲得350萬元的利潤?當銷售單價為多少元時,廠商每月能獲得最大利潤?最大利潤是多少?

(3)根據(jù)相關部門規(guī)定,這種電子產(chǎn)品的銷售單價不能高于32元,如果廠商要獲得每月不低于350萬元的利潤,那么制造出這種產(chǎn)品每月的最低制造成本需要多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線、相交于點..

1)求的度數(shù);

2)以為端點引射線,射線平分,且,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形沿折疊后點重合.若原矩形的長寬之比為,則的值為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知.

1)如圖1,分別平分、.試說明:;

2)如圖2,若,分別平分、,那么 (只要直接填上正確結論即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某片果園有果樹80棵,現(xiàn)準備多種一些果樹提高果園產(chǎn)量,但是如果多種樹,那么樹之間的距離和每棵樹所受光照就會減少,單棵樹的產(chǎn)量隨之降低,若該果園每棵果樹產(chǎn)果y千克,增種果樹x棵,它們之間的函數(shù)關系如圖所示.

(1)求y與x之間的函數(shù)解析式;

(2)在投入成本最低的情況下,增種果樹多少棵時,果園可以收獲果實6750千克?

(3)當增種果樹多少棵時,果園的總產(chǎn)量w(千克)最大?最大產(chǎn)量是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年“五一”節(jié),小明外出爬山,他從山腳爬到山頂?shù)倪^程中,中途休息了一段時間.設他從山腳出發(fā)后所用時間為t(分鐘),所走的路程為s(),st之間的函數(shù)關系如圖所示.下列四種說法:①小明中途休息用了20分鐘;②小明休息前爬山的平均速度為每分鐘70米;③小明在上述過程中所走的路程為6600米;④小明休息前爬山的平均速度大于休息后爬山的平均速度.其中正確的是________(填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的對角線的交點,過點作直線分別交,于點.

1)求證:.

2)若,,,求四邊形的周長.

3)若,直接寫出的值為______.

查看答案和解析>>

同步練習冊答案