如圖,已知拋物線y=ax2+bx+c經(jīng)過(guò)A(-3,0),B(1,0),C(0,3)三點(diǎn),其頂點(diǎn)為D,對(duì)稱軸是直線l,l與x軸交于點(diǎn)H.
(1)求該拋物線的解析式;
(2)若點(diǎn)P是該拋物線對(duì)稱軸l上的一個(gè)動(dòng)點(diǎn),求△PBC周長(zhǎng)的最小值;
(3)如圖(2),若E是線段AD上的一個(gè)動(dòng)點(diǎn)( E與A、D不重合),過(guò)E點(diǎn)作平行于y軸的直線交拋物線于點(diǎn)F,交x軸于點(diǎn)G,設(shè)點(diǎn)E的橫坐標(biāo)為m,△ADF的面積為S.
①求S與m的函數(shù)關(guān)系式;
②S是否存在最大值?若存在,求出最大值及此時(shí)點(diǎn)E的坐標(biāo); 若不存在,請(qǐng)說(shuō)明理由.

解:(1)由題意可知:
解得:
∴拋物線的解析式為:y=-x2-2x+3;

(2)∵△PBC的周長(zhǎng)為:PB+PC+BC
∵BC是定值,
∴當(dāng)PB+PC最小時(shí),△PBC的周長(zhǎng)最小,
∵點(diǎn)A、點(diǎn)B關(guān)于對(duì)稱軸I對(duì)稱,
∴連接AC交l于點(diǎn)P,即點(diǎn)P為所求的點(diǎn)
∵AP=BP
∴△PBC的周長(zhǎng)最小是:PB+PC+BC=AC+BC
∵A(-3,0),B(1,0),C(0,3),
∴AC=3,BC=
故△PBC周長(zhǎng)的最小值為3+

(3)①∵拋物線y=-x2-2x+3頂點(diǎn)D的坐標(biāo)為(-1,4)
∵A(-3,0)
∴直線AD的解析式為y=2x+6
∵點(diǎn)E的橫坐標(biāo)為m,
∴E(m,2m+6),F(xiàn)(m,-m2-2m+3)
∴EF=-m2-2m+3-(2m+6)
=-m2-4m-3
∴S=S△DEF+S△AEF
=EF•GH+EF•AG
=EF•AH
=(-m2-4m-3)×2
=-m2-4m-3;
②S=-m2-4m-3
=-(m+2)2+1;
∴當(dāng)m=-2時(shí),S最大,最大值為1
此時(shí)點(diǎn)E的坐標(biāo)為(-2,2).
分析:(1)根據(jù)函數(shù)圖象經(jīng)過(guò)的三點(diǎn),用待定系數(shù)法確定二次函數(shù)的解析式即可;
(2)根據(jù)BC是定值,得到當(dāng)PB+PC最小時(shí),△PBC的周長(zhǎng)最小,根據(jù)點(diǎn)的坐標(biāo)求得相應(yīng)線段的長(zhǎng)即可;
(3)設(shè)點(diǎn)E的橫坐標(biāo)為m,表示出E(m,2m+6),F(xiàn)(m,-m2-2m+3),最后表示出EF的長(zhǎng),從而表示出S于m的函數(shù)關(guān)系,然后求二次函數(shù)的最值即可.
點(diǎn)評(píng):此題主要考查了待定系數(shù)法求二次函數(shù)解析式以及二次函數(shù)的最值,根據(jù)點(diǎn)的坐標(biāo)表示出線段的長(zhǎng)是表示出三角形的面積的基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線與x軸交于A(-1,0)、B(4,0)兩點(diǎn),與y軸交于點(diǎn)精英家教網(wǎng)C(0,3).
(1)求拋物線的解析式;
(2)求直線BC的函數(shù)解析式;
(3)在拋物線上,是否存在一點(diǎn)P,使△PAB的面積等于△ABC的面積,若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
(4)點(diǎn)Q是直線BC上的一個(gè)動(dòng)點(diǎn),若△QOB為等腰三角形,請(qǐng)寫出此時(shí)點(diǎn)Q的坐標(biāo).(可直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為x=1,且拋物線經(jīng)過(guò)A(-1,0)精英家教網(wǎng)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求這條拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)在拋物線的對(duì)稱軸x=1上求一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,并求出此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•衡陽(yáng))如圖,已知拋物線經(jīng)過(guò)A(1,0),B(0,3)兩點(diǎn),對(duì)稱軸是x=-1.
(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度在線段OA上運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)M從O點(diǎn)出發(fā)以每秒3個(gè)單位長(zhǎng)度的速度在線段OB上運(yùn)動(dòng),過(guò)點(diǎn)Q作x軸的垂線交線段AB于點(diǎn)N,交拋物線于點(diǎn)P,設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
①當(dāng)t為何值時(shí),四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=1,且拋物線經(jīng)過(guò)A(-1,0)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求這條拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)點(diǎn)P是拋物線對(duì)稱軸上一點(diǎn),若△PAB∽△OBC,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線y=ax2+bx+c的頂點(diǎn)是(-1,-4),且與x軸交于A、B(1,0)兩點(diǎn),交y軸于點(diǎn)C;
(1)求此拋物線的解析式;
(2)①當(dāng)x的取值范圍滿足條件
-2<x<0
-2<x<0
時(shí),y<-3;
     ②若D(m,y1),E(2,y2)是拋物線上兩點(diǎn),且y1>y2,求實(shí)數(shù)m的取值范圍;
(3)直線x=t平行于y軸,分別交線段AC于點(diǎn)M、交拋物線于點(diǎn)N,求線段MN的長(zhǎng)度的最大值;
(4)若以拋物線上的點(diǎn)P為圓心作圓與x軸相切時(shí),正好也與y軸相切,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案