【題目】一個(gè)裝有進(jìn)水管和出水管的容器,從某時(shí)刻開始的4分鐘內(nèi)只進(jìn)水不出水,在隨后的8分鐘內(nèi)既進(jìn)水又出水,接著關(guān)閉進(jìn)水管直到容器內(nèi)的水放完.假設(shè)每分鐘的進(jìn)水量和出水量保持不變,容器內(nèi)水量(單位:)與時(shí)間(單位:)的部分函數(shù)圖象如圖所示,請(qǐng)結(jié)合圖象信息解答下列問(wèn)題:
(1)求出水管的出水速度;
(2)求時(shí)容器內(nèi)的水量;
(3)從關(guān)閉進(jìn)水管起多少分鐘時(shí),該容器內(nèi)的水恰好放完?
【答案】(1);(2);(3)
【解析】
(1)設(shè)出水管的出水速度為,根據(jù)10分鐘內(nèi)的進(jìn)水量-10分鐘內(nèi)的出水量=20升列方程求解即可;
(2)設(shè)當(dāng)時(shí),與的函數(shù)解析式為,用待定系數(shù)法求出函數(shù)解析式,再令x=8計(jì)算即可;
(3)用容器的儲(chǔ)水量30升除以(1)中求出的出水速度即可.
解:(1)設(shè)出水管的出水速度為.
,
解得.
答:出水管的出水速度為.
(2)設(shè)當(dāng)時(shí),與的函數(shù)解析式為.
將點(diǎn),代入,得,解得.
∴.
∴當(dāng)時(shí),.
答:時(shí)容器內(nèi)的水量為.
(3).
答:從關(guān)閉進(jìn)水管起時(shí),該容器內(nèi)的水恰好放完.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有3張紙牌,分別是紅桃3、紅桃4和黑桃5(簡(jiǎn)稱紅3,紅4,黑5).把牌洗勻后甲先抽取一張,記下花色和數(shù)字后將牌放回,洗勻后乙再抽取一張.
(1)兩次抽得紙牌均為紅桃的概率;(請(qǐng)用“畫樹狀圖”或“列表”等方法寫出分析過(guò)程)
(2)甲、乙兩人做游戲,現(xiàn)有兩種方案.A方案:若兩次抽得花色相同則甲勝,否則乙勝.B方案:若兩次抽得紙牌的數(shù)字和為奇數(shù)則甲勝,否則乙勝.請(qǐng)問(wèn)甲選擇哪種方案勝率更高?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為進(jìn)一步推進(jìn)青少年陽(yáng)光工程,樹立“每天鍛煉一小時(shí),快樂(lè)學(xué)習(xí)一整天”的指導(dǎo)思想,鄭州市教育局部署了校園陽(yáng)光大課間活動(dòng)鄭州市某中學(xué)體育組為了了解七年級(jí)學(xué)生的體能情況,組織七年級(jí)學(xué)生進(jìn)行了1分鐘跳繩測(cè)試,并將測(cè)試成績(jī)(即1分鐘跳繩的個(gè)數(shù))分段后給出相應(yīng)等級(jí),具體為:測(cè)試成績(jī)?cè)?/span>60~90范圍內(nèi)的記為D級(jí),90~120范圍內(nèi)的記為C級(jí),120~150范圍內(nèi)的記為B級(jí),150~180及以上范圍內(nèi)的記為A級(jí),并繪出了測(cè)試成績(jī)頻數(shù)分布直方圖及扇形統(tǒng)計(jì)圖,其中在扇形統(tǒng)計(jì)圖中A級(jí)對(duì)應(yīng)的圓心角為54°,
請(qǐng)根據(jù)圖中的信息解答下列問(wèn)題:
(1)在扇形統(tǒng)計(jì)圖中,A級(jí)所占百分比為 %;
(2)在扇形統(tǒng)計(jì)圖中,求D級(jí)對(duì)應(yīng)的圓心角的度數(shù);
(3)請(qǐng)結(jié)合統(tǒng)計(jì)圖給出合理的運(yùn)動(dòng)建議.(至少寫出兩條)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料:
數(shù)學(xué)課上,老師出示了這樣一個(gè)問(wèn)題:
如圖1,正方形為中,點(diǎn)、在對(duì)角線上,且,探究線段、、之間的數(shù)量關(guān)系,并證明.
某學(xué)習(xí)小組的同學(xué)經(jīng)過(guò)思考,交流了自己的想法:
小明:“通過(guò)觀察和度量,發(fā)現(xiàn)與存在某種數(shù)量關(guān)系”;
小強(qiáng):“通過(guò)觀察和度量,發(fā)現(xiàn)圖1中線段與相等”;
小偉:“通過(guò)構(gòu)造(如圖2),證明三角形全等,進(jìn)而可以得到線段、、之間的數(shù)量關(guān)系”.
老師:“此題可以修改為‘正方形中,點(diǎn)在對(duì)角線上,延長(zhǎng)交于點(diǎn),在上取一點(diǎn),連接(如圖3).如果給出、的數(shù)量關(guān)系與、的數(shù)量關(guān)系,那么可以求出的值”.
請(qǐng)回答:
(1)求證:;
(2)探究線段、、之間的數(shù)量關(guān)系,并證明;
(3)若,,求的值(用含的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正五邊形的邊長(zhǎng)為2,連接對(duì)角線AD,BE,CE,線段AD分別與BE和CE相交于點(diǎn)M,N,給出下列結(jié)論:①∠AME=108°;②;③MN=;④.其中正確結(jié)論的序號(hào)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知O為直線AD上一點(diǎn),OB是∠AOC內(nèi)部一條射線且滿足∠AOB與∠AOC互補(bǔ),OM、ON分別為∠AOC、∠AOB的平分線.
(1)∠COD與∠AOB相等嗎?請(qǐng)說(shuō)明理由;
(2)若∠AOB=30°,試求∠AOM與∠MON的度數(shù);
(3)若∠MON=55°,試求∠AOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠AOB=50°,過(guò)點(diǎn)O引射線OC,若∠AOC:∠BOC=2:3,OD平分∠AOB,求∠COD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD是菱形,點(diǎn)A的坐標(biāo)為(0,),分別以A,B為圓心,大于AB的長(zhǎng)為半徑作弧,兩弧交于點(diǎn)E,F,直線EF恰好經(jīng)過(guò)點(diǎn)D,則點(diǎn)D的坐標(biāo)為( 。
A. (2,2)B. (2,)C. (,2)D. (+1,
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=-x+1的圖象與x軸、y軸分別交于點(diǎn)A、B,以線段AB為邊在第一象限作等邊△ABC.
(1)若點(diǎn)C在反比例函數(shù)y=的圖象上,求該反比例函數(shù)的解析式;
(2)點(diǎn)P(2,m)在第一象限,過(guò)點(diǎn)P作x軸的垂線,垂足為D,當(dāng)△PAD與△OAB相似時(shí),P點(diǎn)是否在(1)中反比例函數(shù)圖象上?如果在,求出P點(diǎn)坐標(biāo);如果不在,請(qǐng)加以說(shuō)明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com